Skip to main content
Log in

Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catechol is demonstrated as a versatile reducing agent/stabilizing agent for the facile and one pot synthesis of monometallic (Au, Se and Pd) and bimetallic nanoparticles in alkaline condition (pH = 11) based on the redox chemistry of catechol. Catechol-derived PdNPs and SeNPs exhibit laccase and peroxidase like activity, respectively. Catechol derived gold nanoparticles serving as an excellent support for enzyme immobilization with recyclable properties are also reported here. As a test model protienase k immobilized on gold nanoparticles exhibits significant biocatalytic activities without compromising the enzyme activity. In summary. this work offers a versatile reducing agent for nanoparticle synthesis and demonstrates new generation of artificial enzymes.

Graphical abstract

Catechol is explored toward the synthesis of monometallic (Au, Pd, Se) and their corresponding bimetallic nanoparticles and they are found to behave like artificial enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1.
Scheme 2.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad T, Bustam MA, Irfan M et al (2019) Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: role of phenolic compounds and flavonoids. Biotechnol Appl Biochem 66:698–708

    Article  CAS  PubMed  Google Scholar 

  2. Nune SK, Chanda N, Shukla R et al (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19:2912–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo D, Dou D, Ge L et al (2015) A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surfac B Biointerfaces 134:229–234

    Article  CAS  Google Scholar 

  4. Kim TY, Cha S-H, Cho S, Park Y (2016) Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Arch Pharm Res 39:465–473

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y-J, Lee Y-C, Huang C-H, Chang L-S (2016) Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol Appl Pharmacol 310:98–107

    Article  CAS  PubMed  Google Scholar 

  6. Hwang SJ, Jun SH, Park Y et al (2015) Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation. Nanomed Nanotechno Biol Med 11:1677–1688

    Article  CAS  Google Scholar 

  7. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55:9557–9577

    Article  CAS  Google Scholar 

  8. Kim HJ, Kim D, Yoon H et al (2015) Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one-step fast assembly. Adv Mater Interfaces 2:1500298

    Article  Google Scholar 

  9. Suherman AL, Kuss S, Tanner EEL et al (2018) Electrochemical Hg 2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst 143:2035–2041

    Article  CAS  PubMed  Google Scholar 

  10. Wu Y-S, Huang F-F, Lin Y-W (2013) Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl Mater Interfaces 5:1503–1509

    Article  CAS  PubMed  Google Scholar 

  11. Jena S, Singh RK, Panigrahi B et al (2016) Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: mechanistic perspective and therapeutic potential. J Photochem Photobiol B Biol 164:306–313

    Article  CAS  Google Scholar 

  12. Singh RK, Mishra S, Jena S et al (2018) Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe. Chem Commun 54:3981–3984

    Article  CAS  Google Scholar 

  13. Singh RK, Panigrahi B, Mishra S et al (2018) pH triggered green synthesized silver nanoparticles toward selective colorimetric detection of kanamycin and hazardous sulfide ions. J Mol Liq 269:269–277

    Article  CAS  Google Scholar 

  14. Khoobchandani M, Katti K, Maxwell A et al (2016) Laminin receptor-avid nanotherapeutic EGCg-AuNPs as a potential alternative therapeutic approach to prevent restenosis. Int J Mol Sci 17:316

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma Y, Niu H, Cai Y (2011) Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem Commun 47:12643–12645

    Article  CAS  Google Scholar 

  16. Marcelo G, Fernández-García M (2014) Direct preparation of PNIPAM coating gold nanoparticles by catechol redox and surface adhesion chemistry. RSC Adv 4:11740–11749

    Article  CAS  Google Scholar 

  17. Wu J, Zhang L, Wang Y et al (2011) Mussel-inspired chemistry for robust and surface-modifiable multilayer films. Langmuir 27:13684–13691

    Article  CAS  PubMed  Google Scholar 

  18. Black KCL, Liu Z, Messersmith PB (2011) Catechol redox induced formation of metal core− polymer shell nanoparticles. Chem Mater 23:1130–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Biomimetics: catechol-based biomimetic functional materials (Adv. Mater. 5/2013). Adv Mater 25:792

    Article  Google Scholar 

  20. Roy AK, Park SY, In I (2015) Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology 26:105601

    Article  PubMed  Google Scholar 

  21. Faure E, Falentin-Daudré C, Jérôme C et al (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38:236–270

    Article  CAS  Google Scholar 

  22. Marcelo G, Munoz-Bonilla A, Rodríguez-Hernández J, Fernández-García M (2013) Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polym Chem 4:558–567

    Article  CAS  Google Scholar 

  23. Zhang L, Wu J, Wang Y et al (2012) Combination of bioinspiration: a general route to superhydrophobic particles. J Am Chem Soc 134:9879–9881

    Article  CAS  PubMed  Google Scholar 

  24. Gebru H, Cui S, Li Z et al (2017) Facile pH-Dependent synthesis and characterization of catechol stabilized silver nanoparticles for catalytic reduction of 4-Nitrophenol. Catal Letters 147:2134–2143

    Article  CAS  Google Scholar 

  25. Jiao X, Song H, Zhao H et al (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H 2 O 2 and glucose detection. Anal Methods 4:3261–3267

    Article  CAS  Google Scholar 

  26. Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles. Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  27. Wang X-X, Wu Q, Shan Z, Huang Q-M (2011) BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26:3614–3619

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Hu X, Hou S et al (2011) Screening of inhibitors for oxidase mimics of Au@ Pt nanorods by catalytic oxidation of OPD. Chem Commun 47:10981–10983

    Article  CAS  Google Scholar 

  29. Zhou Y-T, He W, Wamer WG et al (2013) Enzyme-mimetic effects of gold@ platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale 5:1583–1591

    Article  CAS  PubMed  Google Scholar 

  30. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  CAS  PubMed  Google Scholar 

  31. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  32. Long YJ, Li YF, Liu Y et al (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941

    Article  CAS  Google Scholar 

  33. Wang S, Chen W, Liu A et al (2012) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13:1199–1204

    Article  CAS  PubMed  Google Scholar 

  34. Fan J, Yin J-J, Ning B et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32:1611–1618

    Article  CAS  PubMed  Google Scholar 

  35. Natalio F, André R, Hartog AF et al (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7:530–535

    Article  CAS  PubMed  Google Scholar 

  36. Asati A, Santra S, Kaittanis C et al (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chemie 121:2344–2348

    Article  Google Scholar 

  37. Shi W, Wang Q, Long Y et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  38. Dong Y, Chi Y, Lin X et al (2011) Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Phys Chem Chem Phys 13:6319–6324

    Article  CAS  PubMed  Google Scholar 

  39. Jiang C, Zhu J, Li Z et al (2017) Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum. RSC Adv 7:44463–44469

    Article  CAS  Google Scholar 

  40. Fu Y, Zhang H, Dai S et al (2015) Glutathione-stabilized palladium nanozyme for colorimetric assay of silver (I) ions. Analyst 140:6676–6683

    Article  CAS  PubMed  Google Scholar 

  41. Mazumder V, Sun S (2009) Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc 131:4588–4589

    Article  CAS  PubMed  Google Scholar 

  42. Yang Z, Zhang Z, Jiang Y et al (2016) Palladium nanoparticles modified electrospun CoFe 2 O 4 nanotubes with enhanced peroxidase-like activity for colorimetric detection of hydrogen peroxide. RSC Adv 6:33636–33642

    Article  CAS  Google Scholar 

  43. Reshmi R, Sanjay G, Sugunan S (2007) Immobilization of α-amylase on zirconia: a heterogeneous biocatalyst for starch hydrolysis. Catal Commun 8:393–399

    Article  CAS  Google Scholar 

  44. Betzel C, Gourinath S, Kumar P et al (2001) Structure of a serine protease proteinase K from tritirachium album limber at 0.98 Å resolution. Biochemistry 40:3080–3088

    Article  CAS  PubMed  Google Scholar 

  45. Stone LA, Jackson GS, Collinge J et al (2007) Inhibition of proteinase K activity by copper (II) ions. Biochemistry 46:245–252

    Article  CAS  PubMed  Google Scholar 

  46. Bayramoglu G, Kayili HM, Oztekin M, et al (2020) Hydrophilic spacer-arm containing magnetic nanoparticles for immobilization of proteinase K: Employment for speciation of proteins for mass spectrometry-based analysis. Talanta 206:120218file:///C:/Users/User/Downloads/scholar (3).

  47. Balla J, Kiss T, Jameson RF (1992) Copper (II)-catalyzed oxidation of catechol by molecular oxygen in aqueous solution. Inorg Chem 31:58–62

    Article  CAS  Google Scholar 

  48. Tomaszewska E, Soliwoda K, Kadziola K et al (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater. https://doi.org/10.1155/2013/313081

    Article  Google Scholar 

  49. Cooray MCD, Liu Y, Langford SJ et al (2015) One pot synthesis of poly (5-hydroxyl-1, 4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose. Anal Chim Acta 856:27–34

    Article  CAS  PubMed  Google Scholar 

  50. Prashant J, Gary H (2011) The catalytic role of uranyl in formation of polycatechol complexes. Chem Cent J 5(1):1–7

    Google Scholar 

  51. Sahay R, Yadav RSS, Yadava S, Yadav KDS (2012) A laccase of fomes durissimus MTCC-1173 and Its role in the conversion of methylbenzene to benzaldehyde. Appl Biochem Biotechnol 166:563–575

    Article  CAS  PubMed  Google Scholar 

  52. Sharma RV, Soni KK, Dalai AK (2012) Preparation, characterization and application of sulfated Ti-SBA-15 catalyst for oxidation of benzyl alcohol to benzaldehyde. Catal Commun 29:87–91

    Article  CAS  Google Scholar 

  53. Necsoiu I, Balaban AT, Pascaru I et al (1963) The mechanism of the etard reaction. Tetrahedron 19:1133–1142

    Article  CAS  Google Scholar 

  54. Wendlandt AE, Stahl SS (2015) Quinone-catalyzed selective oxidation of organic molecules. Angew Chemie Int Ed 54:14638–14658

    Article  CAS  Google Scholar 

  55. Li L, Wang W, Chen K (2014) Synthesis of black elemental selenium peroxidase mimic and its application in green synthesis of water-soluble polypyrrole as a photothermal agent. J Phys Chem C 118:26351–26358

    Article  CAS  Google Scholar 

  56. Huang Y, Liu C, Pu F et al (2017) A GO–Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun 53:3082–3085

    Article  CAS  Google Scholar 

  57. Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  PubMed  Google Scholar 

  58. Petrotchenko EV, Serpa JJ, Hardie DB et al (2012) Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins. Mol Cell Proteomics 11:M111-013524

    Article  PubMed Central  Google Scholar 

  59. Anderson J, Byrne T, Woelfel KJ et al (1994) The hydrolysis of p-nitrophenyl acetate: a versatile reaction to study enzyme kinetics. J Chem Educ 71:715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Department of Science & Technology-Nanomission, India (Grant no. SR/NM/NS-1075/2013), Department of Biotechnology, India (grant no.BT/PR10019/NNT/28/708/2013) and Department of Atomic Energy, India (BRNS Grant no. 37(2)/14/22/2015/BRNS/37172), Govt. of India to DM. SM acknowledges the financial support from Indian Council of Medical Research (ICMR), Govt. of India, for providing Senior Research Fellowship (SRF) award (45/43/2019-NAN-BMS).

Author information

Authors and Affiliations

Authors

Contributions

SM, BP and RKS conducted all the experiments. SM drafted the primary manuscript. DM supervised the overall project and edited the manuscript.

Corresponding author

Correspondence to Dindyal Mandal.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Panigrahi, B., Singh, R.K. et al. Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles. Catal Lett 153, 1602–1614 (2023). https://doi.org/10.1007/s10562-022-04095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04095-z

Keywords

Navigation