Skip to main content
Log in

Cu–ZnO Composite Nanoparticles Loaded Catalytic Fiber Efficiently Inactivates Bacteria by Generating Active Species Without Needing Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

As one of extensively used photocatalysts, zinc oxide nanoparticles (ZnO NPs) can generate free radicals under proper light irradiation, thereby achieving excellent antibacterial performance. However, the requirement of using light activation has limited its application to wider fields. In addition, nano-copper (Cu NPs) have gradually attracted the attention of researchers due to their excellent antibacterial properties. However, the high surface activity of nanoparticles makes them easy to agglomerate, and Cu NPs are easily oxidized, which affect the antibacterial activity. By synthesizing Cu–ZnO composite nanoparticles and loading the particles onto low melting-point polyethylene terephthalate (LMPET) fibers, we have developed a novel catalytic fiber (Cu–ZnO@LMPET) that can generate active species without needing light. It was found that Cu–ZnO@LMPET fibers with the copper content of 5 wt% (vs. ZnO NPs) or above could achieve 99% antibacterial effects on S. aureus and E. coli under dark conditions. Moreover, the antibacterial rates against E. coli and S. aureus could still be larger than 97 and 98%, respectively, even if the fibers were washed 50 times. In-vitro biocompatibility assessment also displayed that the as-prepared fibers had superb cytocompatibility. These results indicate that our developed fibers have highly efficient antibacterial properties, good washing resistance and high stability. Thus, our work has shed new light on the use of Cu–ZnO NPs for antibacterial purposes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hendaus MA, Jomha FA (2021) J Biomol Struct Dyn 39:4185–4191

    PubMed  Google Scholar 

  2. Ben YJ, Fu CX, Hu M, Liu L, Wong MH, Zheng CM (2019) Environ Res 169:483–493

    PubMed  Google Scholar 

  3. Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Chem Soc Rev 48:415–427

    PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Yang YN, Shi YR, Song H, Yu CZ (2020) Adv Mater 32:1904106

    Google Scholar 

  5. Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS (2021) Mater Sci Eng: C 118:111382

    Google Scholar 

  6. Qais FA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I (2019) Bioinorg Chem Appl 2019:4649506

    PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Zhang G, Chai M, Yao X, Chen W, Chu PK (2021) Bioact Mater 6:12–25

    PubMed  Google Scholar 

  8. Gurunathan S (2019) Arab J Chem 12:168–180

    Google Scholar 

  9. Svetlichnyi V, Shabalina A, Lapin I, Goncharova D, Nemoykina A (2016) Appl Surf Sci 372:20–29

    Google Scholar 

  10. Liu J, Wang Y, Ma J, Peng Y, Wang A (2019) J Alloy Compd 783:898–918

    Google Scholar 

  11. Jiang J, Pi J, Cai J (2018) Bioinorg Chem Appl 2018:1062562

    PubMed  PubMed Central  Google Scholar 

  12. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP (2020) J Colloid Interf Sci 563:370–380

    Google Scholar 

  13. Huo S, Ding S, Zhao C, Wang C, Yu F, Fang J, Yang Y (2020) Catal Lett 151:1937–1947

    Google Scholar 

  14. Van Thuan D, Khoa NT, Kim S-W, Chung JS, Hur SH, Kim EJ, Hahn SH, Wang M (2017) Catal Lett 147:2440–2447

    Google Scholar 

  15. Xi J, Wei G, An L, Xu Z, Xu Z, Fan L, Gao L (2019) Nano Lett 19:7645–7654

    PubMed  Google Scholar 

  16. Jessop IA, Perez YP, Jachura A, Nunez H, Saldias C, Isaacs M, Tundidor-Camba A, Terraza CA, Araya-Duran I, Camarada MB, Carcamo-Vega JJ (2021) Polym 13:401

    Google Scholar 

  17. Phan DN, Dorjjugder N, Saito Y, Khan MQ, Ullah A, Bie X, Taguchi G, Kim I-S (2020) Mater Today Commun 25:101377

    Google Scholar 

  18. Powar NS, Patel VJ, Pagare PK, Pandav RS (2019) Chem Methodol 3:457–480

    Google Scholar 

  19. Wang L, Hu C, Shao L (2017) Int J Nanomed 12:1227–1249

    Google Scholar 

  20. Naradala J, Allam A, Tumu VR, Rajaboina RK (2022) Biointerface Res App 12:1230–1236

    Google Scholar 

  21. Zhang Y, Pan T, Yang Z (2020) Chem Eng J 389:124433

    Google Scholar 

  22. Arslan M, Günay K (2018) Int J Polym Mater Po 68:811–818

    Google Scholar 

  23. Xu S, Lu W, Chen S, Xu Z, Xu T, Sharma VK, Chen W (2019) Chem Eng J 375:121949

    Google Scholar 

  24. Arif M, Monga S, Sanger A, Vilarinho PM, Singh A (2018) Vacuum 155:662–666

    Google Scholar 

  25. He M, Lu L, Zhang J, Li D (2015) Sci Bull 60:227–234

    Google Scholar 

  26. Jiménez-Hernández L, Estévez-Hernández O, Hernández-Sánchez M, Díaz JA, Farías- Sánchez M, Reguera E (2016) Colloid Surface A 489:351–359

    Google Scholar 

  27. Norouzi A, Nezamzadeh-Ejhieh A, Fazaeli R (2021) Mat Sci Semicon Proc 122:105495

    Google Scholar 

  28. Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf AR, Rajesh K, Kyzas GZ (2020) J Mol Struct 1211:128107

    Google Scholar 

  29. Manjari G, Saran S, Devipriya SP, Rao AVB (2018) Catal Lett 148:2561–2571

    Google Scholar 

  30. Pimpliskar PV, Motekar SC, Umarji GG, Lee W, Arbuj SS (2019) Photoch Photobio Sci 18:1503–1511

    Google Scholar 

  31. Xiao S, Zhao L, Lian J (2013) Catal Lett 144:347–354

    Google Scholar 

  32. Kumar R, Umar A, Kumar G, Nalwa HS (2017) Ceram Int 43:3940–3961

    Google Scholar 

  33. Wang P, Yang L, Li J, Sadeh B (2020) Catal Lett 150:1985–1992

    Google Scholar 

  34. Ramesh S, Vetrivel S, Suresh P, Kaviarasan V (2020) Mater Today: Proc 33:2626–2630

    Google Scholar 

  35. Huang Z, Bi L, Zhang Z, Han Y (2012) Mol Med Rep 6:709–715

    PubMed  Google Scholar 

  36. Chen CH (2010) J Appl Polym Sci 87:2004–2010

    Google Scholar 

  37. Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013) J Mol Liq 177:394–401

    Google Scholar 

  38. Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y (2013) Ceram Int 39:2283–2292

    Google Scholar 

  39. Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2012) Acs Appl Mater Inter 4:4024–4030

    Google Scholar 

  40. Devaraj M, Saravanan R, Deivasigamani R, Gupta VK, Gracia F, Jayadevan S (2016) J Mol Liq 221:930–941

    Google Scholar 

  41. Tahir D, Tougaard S (2012) J Phys Condens Matter 24(13):135005

    PubMed  Google Scholar 

  42. Lu L, Hu S, Lee H-I, Wöll C, Fischer RA (2006) J Nanopart Res 9:491–496

    Google Scholar 

  43. Lennox AJJ, Bartels P, Pohl M-M, Junge H, Beller M (2016) J Catal 340:177–183

    Google Scholar 

  44. Li X, Ji X, Chen K, Ullah MW, Yuan X, Lei Z, Cao J, Xiao J, Yang G (2020) Biomater Sci 8:2797–2813

    PubMed  Google Scholar 

  45. Kunliang L, Zhicheng J, Xiaolong H, Dan Y, Yu Z, Haidong Z, Gaojun T, Fei X (2020) Int J Biol Macromol 142:866–878

    PubMed  Google Scholar 

  46. Du L, Huang Y, Zhang Q, Zhou Y, Huang J, Yan L, Yu Z, Qin A, Yang H, Chen M, Liang L, Bian B, Li X, Fu J (2019) Acta Biomater 88:370–382

    PubMed  Google Scholar 

  47. He M, Lu L, Zhang J, Li D (2015) J Nanosci Nanotechno 15:6435–6443

    Google Scholar 

  48. Agnihotri S, Mukherji S, Mukherji S (2013) Nanoscale 5:7328–7340

    PubMed  Google Scholar 

  49. Herman A, Herman AP (2014) J Nanosci Nanotechno 14:946–957

    Google Scholar 

  50. Wang X, Lu W, Zhao Z, Zhong H, Zhu Z, Chen W (2020) Chem Eng J 400:125872

    Google Scholar 

  51. Meng S, Wu H, Cui Y, Zheng X, Wang H, Chen S, Wang Y, Fu X (2020) Appl Catal B: Environ 266:118617

    Google Scholar 

  52. Nguyen PY, Carvalho G, Reis MAM, Oehmen A (2021) Water Res 188:116446

    PubMed  Google Scholar 

  53. Dong L, Xu T, Chen W, Lu W (2019) Chem Eng J 357:198–208

    Google Scholar 

Download references

Acknowledgements

This work was supported by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (No. 2023C01207), National Natural Science Foundation of China (No. 12104405, No. 51703201) and Zhejiang Provincial Natural Science Foundation of China (No. LQ17E030003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 981 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Chen, F., Qin, X. et al. Cu–ZnO Composite Nanoparticles Loaded Catalytic Fiber Efficiently Inactivates Bacteria by Generating Active Species Without Needing Light. Catal Lett 154, 94–106 (2024). https://doi.org/10.1007/s10562-022-04070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04070-8

Keywords

Navigation