Skip to main content
Log in

TiO2 Supported RuRe Nanocatalysts for Soot Oxidation: Effect of Re and the Support Nature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic combustion of hazardous particulate matter (soot) generated by automobile engines is a primary method of their elimination. Ruthenium-based catalysts are a promising alternative for traditional noble metal (Pt, Pd) based systems; however, their relatively poor thermal stability hinders wide applications. In this study, we synthesized a novel, highly active, and stable catalyst for soot oxidation containing bimetallic RuRe nanoparticles supported on TiO2. The RuRe NPs were synthesized by colloidal, microwave-assisted polyol method and deposited on rutile or anatase TiO2. The effect of rhenium content and the nature of TiO2 support on the performance of RuRe nanoparticles (NPs) in the soot oxidation under air atmosphere was investigated. Bimetallic RuRe/TiO2 nanocatalysts exhibited higher activity in the soot oxidation than Ru/TiO2 systems, and the rutile supported 2 wt% Ru–0.4 wt% Re nanocatalyst (Ru/Re atomic ratio of 9:1) showed the best catalytic performance (T50 = 340 °C and T90 < 400 °C). All studied nanocatalysts were stable under reaction conditions in the consecutive catalytic tests. The exceptional catalytic performance of bimetallic RuRe NPs is explained by the synergy effect between ruthenium, rhenium, and TiO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frank B, Schlogl R, Su DS (2013) Diesel soot toxification. Environ Sci Technol 47:3026–3027. https://doi.org/10.1021/es4003873

    Article  CAS  PubMed  Google Scholar 

  2. Prasad R, Bella VR (2010) A review on diesel soot emission, its effect and control. Bull Chem React Eng Catal 5:69–86. https://doi.org/10.9767/bcrec.5.2.794.69-86

    Article  CAS  Google Scholar 

  3. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A 509:75–96. https://doi.org/10.1016/j.apcata.2015.10.016

    Article  CAS  Google Scholar 

  4. Neyertz CA, Banus ED, Miro E, Querini CA (2014) Potassium-promoted Ce0.65Zr03.5O2 monolithic catalysts for diesel soot combustion. Chem Eng J 248:394–405. https://doi.org/10.1016/j.cej.2014.03.048

    Article  CAS  Google Scholar 

  5. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B 146:1–11. https://doi.org/10.1016/j.apcatb.2013.02.033

    Article  CAS  Google Scholar 

  6. Stelmachowski P, Legutko P, Kopacz A, Jakubek T, Indyka P, Pietrzyk P, Wojtasik M, Markowski J, Krasodomski W, Ziemiański L, Żak G, Sojka Z, Kotarba A (2016) Role of chain length of the capping agents of iron oxide based fuel borne catalysts in the enhancement of soot combustion activity. Appl Catal B 199:485–493. https://doi.org/10.1016/j.apcatb.2016.06.056

    Article  CAS  Google Scholar 

  7. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442. https://doi.org/10.1016/S0021-9517(02)00067-2

    Article  CAS  Google Scholar 

  8. Legutko P, Jakubek T, Kaspera W, Stelmachowski P, Sojka Z, Kotarba A (2017) Strong enhancement of desoot activity of transition metal oxides by alkali doping, additive effects of potassium and nitric oxide. Top Catal 60:162–170. https://doi.org/10.1007/s11244-016-0727-3

    Article  CAS  Google Scholar 

  9. Totton TS, Misquitta AJ, Kraft M (2012) A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys Chem Chem Phys 14:4081–4094. https://doi.org/10.1039/C2CP23008A

    Article  CAS  PubMed  Google Scholar 

  10. Ramdas R, Nowicka E, Jenkins R, Sellick D, Davies C, Golunski S (2015) Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Appl Catal B 176–177:436–443. https://doi.org/10.1016/j.apcatb.2015.04.031

    Article  CAS  Google Scholar 

  11. Castoldi L, Aneggi E, Matarrese R, Bonzi R, Trovarelli A, Lietti L (2017) Simultaneous removal of soot and NOx over silver and ruthenium-based catalysts. Top Catal 60:29–213. https://doi.org/10.1007/s11244-016-0599-6

    Article  CAS  Google Scholar 

  12. Matarrese R, Aneggi E, Castoldi L, Llorca J, Trovarelli A, Lietti L (2016) Simultaneous removal of soot and NOx over K- and Ba-doped ruthenium supported catalysts. Catal Today 267:119–129. https://doi.org/10.1016/j.cattod.2015.12.016

    Article  CAS  Google Scholar 

  13. Aouad S, Saab E, Abi-Aad E, Aboukaïs A (2007) Reactivity of Ru-based catalysts in the oxidation of propene and carbon black. Catal Today 119:273–277. https://doi.org/10.1016/j.cattod.2006.08.030

    Article  CAS  Google Scholar 

  14. Aouad S, Abi-Aad E, Aboukaïs A (2009) Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts. Appl Catal B 88:249–256. https://doi.org/10.1016/j.apcatb.2008.10.002

    Article  CAS  Google Scholar 

  15. Ledwa KA, Pawlyta M, Kępiński L (2018) RuxCe1-xO2-y nanoparticles deposited on functionalized gamma-Al2O3 as a thermally stable oxidation catalyst. Appl Catal B 230:135–144. https://doi.org/10.1016/j.apcatb.2018.02.037

    Article  CAS  Google Scholar 

  16. Homsi D, Aouad S, El Nakat J, El Khoury B, Obeid P, Abi-Aad E, Aboukaïs A (2011) Carbon black and propylene oxidation over Ru/CexZr1-xO2 catalysts. Catal Commun 12:776–780. https://doi.org/10.1016/j.catcom.2011.01.014

    Article  CAS  Google Scholar 

  17. Tschamber V, Jeguirim M, Villani K, Martens J, Ehrburger P (2007) Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO2. Appl Catal B 77:299–303. https://doi.org/10.1016/j.apcatb.2006.10.016

    Article  CAS  Google Scholar 

  18. Villani K, Kirschhock CEA, Liang D, Van Tendeloo G, Martens JA (2006) Catalytic carbon oxidation over ruthenium-based catalysts. Angew Chem Int Ed 45:3106–3109. https://doi.org/10.1002/anie.200503799

    Article  CAS  Google Scholar 

  19. Jeguirim M, Villani K, Brilhac JF, Martens JA (2010) Ruthenium and platinum catalyzed carbon oxidation: a comparative kinetic study. Appl Catal B 96:34–40. https://doi.org/10.1016/j.apcatb.2010.01.031

    Article  CAS  Google Scholar 

  20. Okal J, Zawadzki M (2009) Catalytic combustion of butane on Ru/γ-Al2O3 catalysts. Appl Catal B 89:22–32. https://doi.org/10.1016/j.apcatb.2008.11.024

    Article  CAS  Google Scholar 

  21. Okal J, Zawadzki M, Tylus W (2011) Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method. Appl Catal B 101:548–559. https://doi.org/10.1016/j.apcatb.2010.10.028

    Article  CAS  Google Scholar 

  22. Okal J, Zawadzki M, Kraszkiewicz P, Adamska K (2018) Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: Effect of preparation method and metal salt precursors. Appl Catal A 549:161–169. https://doi.org/10.1016/j.apcata.2017.09.036

    Article  CAS  Google Scholar 

  23. Mondelli C, Amrute AP, Krumeich F, Schmidt T, Pérez-Ramírez J (2011) Shaped RuO2/SnO2–Al2O3 catalyst for large-scale stable Cl2 production by HCl oxidation. Chem Cat Chem 3:657–663. https://doi.org/10.1002/cctc.201000424

    Article  CAS  Google Scholar 

  24. Kondratenko EV, Amrute AP, Pohl MM, Steinfeldt N, Mondelli C, Pérez-Ramírez J (2013) Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation. Catal Sci Technol 3:2555–2558. https://doi.org/10.1039/C3CY00372H

    Article  CAS  Google Scholar 

  25. Wang X, Liu Y, Xu Ch, Lu X, Ma R, Fu Y, Wang S, Zhu W (2021) Effects of the support-crystal size on the catalytic performance of RuO2/TiO2 in the deacon process. Catal Lett 151:2346–2354. https://doi.org/10.1007/s10562-020-03493-5]

    Article  CAS  Google Scholar 

  26. Perkas N, Zhong Z, Chen L, Besson M, Gedanken A (2005) Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas. Catal Lett 103:9–14. https://doi.org/10.1007/s10562-005-6496-4

    Article  CAS  Google Scholar 

  27. Baranowska K, Okal J, Tylus W (2016) Microwave-assisted polyol synthesis of bimetallic RuRe nanoparticles stabilized by PVP or oxide supports (γ-alumina and silica). Appl Catal A 511:117–130. https://doi.org/10.1016/j.apcata.2015.11.045

    Article  CAS  Google Scholar 

  28. Baranowska K, Okal J (2015) Bimetallic Ru–Re/γ-Al2O3 catalysts for the catalytic combustion of propane: effect of the Re addition. Appl Catal A 499:158–167. https://doi.org/10.1016/j.apcata.2015.04.023

    Article  CAS  Google Scholar 

  29. Okal J, Zawadzki M, Baranowska K (2016) Methane combustion over bimetallic Ru–Re/γ-Al2O3 catalysts: effect of Re and pretreatments. Appl Catal B 194:22–31. https://doi.org/10.1016/j.apcatb.2016.04.038

    Article  CAS  Google Scholar 

  30. Ayvali T, Fazzini PF, Lecante P, Mayoral A, Philippot K, Chaudret B (2017) Control of reactivity through chemical order in very small RuRe nanoparticles. Dalton Trans 46:15070–15079. https://doi.org/10.1039/C7DT02287E

    Article  PubMed  Google Scholar 

  31. Lee Y, Kim YT, Kwon EE, Lee J (2020) Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan. Environ Res 184:109325. https://doi.org/10.1016/j.envres.2020.109325

    Article  CAS  PubMed  Google Scholar 

  32. Di X, Li C, Zhang B, Qi J, Li W, Su D, Liang C (2017) Role of Re and Ru in Re-Ru/C bimetallic catalysts for the aqueous hydrogenation of succinic acid. Ind Eng Chem Res 56:4672–4683. https://doi.org/10.1021/acs.iecr.6b04875

    Article  CAS  Google Scholar 

  33. Jung KB, Lee J, Ha JM, Lee H, Suh DJ, Jun CH, Jae J (2018) Effective hydrodeoxygenation of lignin-derived phenols using bimetallic RuRe catalysts: effect of carbon supports. Catal Today 303:191–199. https://doi.org/10.1016/j.cattod.2017.07.027

    Article  CAS  Google Scholar 

  34. Jin X, Thapa PS, Subramaniam B, Chaudhari RV (2016) Kinetic modeling of sorbitol hydrogenolysis over bimetallic RuRe/C catalyst. ACS Sustain Chem Eng 4:6037–6047. https://doi.org/10.1021/acssuschemeng.6b01346

    Article  CAS  Google Scholar 

  35. Adamska K, Smykała SZ, Zieliński S, Szymański D, Hojeńska A, Stelmachowski P, Kotarba A, Okal J (2021) Oxidation of soot over supported RuRe nanoparticles prepared by the microwave-polyol method. React Kinet Mech Cat 134:221–242. https://doi.org/10.1007/s11144-021-02048-y

    Article  CAS  Google Scholar 

  36. Liu L, Zhao H, Andino JM, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile and brookite polymorphs and exploration of surface chemistry. ACS Catal 2:1817–1828. https://doi.org/10.1021/cs300273q

    Article  CAS  Google Scholar 

  37. Debecker DP, Farin B, Gaigneaux EM, Sanchez C, Sassoye C (2014) Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Appl Catal A 481:11–18. https://doi.org/10.1016/j.apcata.2014.04.043

    Article  CAS  Google Scholar 

  38. Zhou G, Dou R, Bi H, Xie S, Pei Y, Fan K, Qiao M, Sun B, Zong B (2015) Ru nanoparticles on rutile/anatase junction of P25 TiO2: controlled deposition and synergy in partial hydrogenation of benzene to cyclohexene. J Catal 332:119–126. https://doi.org/10.1016/j.jcat.2015.09.016

    Article  CAS  Google Scholar 

  39. Brzezinska M, Niemeier J, Louven Y, Keller N, Palkovits R, Ruppert A (2020) TiO2 supported Ru catalysts for the hydrogenation of succinic acid: influence of the support. Catal Sci Technol 10:6860–6869. https://doi.org/10.1039/D0CY01446J

    Article  CAS  Google Scholar 

  40. Martynova SA, Yusenko KV, Korolkov IV, Baidina IA, Korenev SV (2009) X-ray diffraction study of [Ru(NH3)5Cl][ReCl6] and [Ru(NH3)5Cl]2[ReCl6]Cl2 and their thermolysis products: crystal-chemical analysis of the Ru–Re system. J Struct Chem 50:120–126. https://doi.org/10.1007/s10947-009-0016-0

    Article  CAS  Google Scholar 

  41. Wang DX, Huang J, Liu F, Xu XL, Fang XZ, Liu JJ, Xie YC, Wang X (2020) Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catal Today 339:220–232. https://doi.org/10.1016/j.cattod.2019.02.038

    Article  CAS  Google Scholar 

  42. Kim A, Debecker DP, Devred F, Dubois V, Sanchez C, Sassoye C (2018) CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Appl Catal B 220:615–625. https://doi.org/10.1016/j.apcatb.2017.08.058

    Article  CAS  Google Scholar 

  43. Xiang G, Shi X, Wu Y, Zhuang J, Wang X (2012) Size effects in atomic-level epitaxial redistribution process of RuO2 over TiO2. Sci Rep 2:801. https://doi.org/10.1038/srep00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunn JP, Stenger HG Jr, Wachs IE (1999) Oxidation of SO2 over supported metal oxide catalysts. J Catal 181:233–243. https://doi.org/10.1006/jcat.1998.2305

    Article  CAS  Google Scholar 

  45. Seitsonen AP, Over H (2010) Oxidation of HCl over TiO2-supported RuO2: a density functional theory study. J Phys Chem C 114:22624–22629. https://doi.org/10.1021/jp108603a

    Article  CAS  Google Scholar 

  46. Secordel X, Berrier E, Capron M, Cristol S, Paul JF, Fournier M, Payen E (2010) TiO2-supported rhenium oxide catalysts for methanol oxidation: effect of support texture on the structure and reactivity evidenced by an operando Raman study. Catal Today 155:177–183. https://doi.org/10.1016/j.cattod.2010.01.003

    Article  CAS  Google Scholar 

  47. Ro I, Xu M, Graham GW, Pan X, Christopher P (2019) Synthesis of heteroatom Rh−ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal 9:10899–10912. https://doi.org/10.1021/acscatal.9b02111

    Article  CAS  Google Scholar 

  48. Okal J, Tylus W, Kępiński L (2004) XPS study of oxidation of rhenium metal on γ-Al2O3 support. J Catal 225:489–509. https://doi.org/10.1016/j.jcat.2004.05.004

    Article  CAS  Google Scholar 

  49. Sato Y, Soma Y, Miyao T, Naito S (2006) The water-gas-shift reaction over Ir/TiO2 and Ir-Re/TiO2 catalysts. Appl Catal A 304:78–85. https://doi.org/10.1016/j.apcata.2006.02.022

    Article  CAS  Google Scholar 

  50. Zhou L, Lin W, Liu K, Wang Z, Liu Q, Cheng H, Zhang Ch, Arai M, Zhao F (2020) Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO2 catalysts: rate enhancement and selectivity control by the addition of Re. Catal Sci Technol 10:222–230. https://doi.org/10.1039/C9CY01909J

    Article  CAS  Google Scholar 

  51. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corp., Eden Prairie/USA)

  52. Ma L, He D (2009) Hydrogenolysis of glycerol to propanediols over highly active Ru–Re bimetallic catalysts. Top Catal 52:834–844. https://doi.org/10.1007/s11244-009-9231-3

    Article  CAS  Google Scholar 

  53. Kaspera W, Zieliński S, Kotarba A (2017) Alkali tungsten bronzes as soot oxidation catalysts: the key role of electrodonor properties of catalytic surface. Catal Commun 98:76–80. https://doi.org/10.1016/j.catcom.2017.05.009

    Article  CAS  Google Scholar 

  54. Zhu R, Yan Q, He J, Cao G, Ouyang F (2017) Simultaneous removal of soot and NOx with Ru-Ir/TiO2 catalyst under oxygen-rich condition. Appl Catal A 541:42–49. https://doi.org/10.1016/j.apcata.2017.04.014

    Article  CAS  Google Scholar 

  55. Mukherjee D, Venkataswamy P, Devaiah D, Rangaswamy A, Reddy BM (2017) Crucial role of titanium dioxide support in soot oxidation catalysis of manganese doped ceria. Catal Sci Technol 7:3045–3055. https://doi.org/10.1039/C7CY01029J

    Article  CAS  Google Scholar 

  56. Małecka MA, Kępiński L, Miśta W (2007) Structure evolution of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu) in O2 and H2 atmosphere and their catalytic activity in soot combustion. Appl Catal B 74:290–298. https://doi.org/10.1016/j.apcatb.2007.02.021

    Article  CAS  Google Scholar 

  57. Aneggi E, de Leitenburg C, Trovarelli A (2012) On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catal Today 181:108–115. https://doi.org/10.1016/j.cattod.2011.05.034

    Article  CAS  Google Scholar 

  58. Querini CA, Ulla RF, Soria J, Sedrán UA, Miró EE (1998) Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co K/MgO catalysts. Appl Catal B 15:5–19. https://doi.org/10.1016/S0926-3373(97)00032-5

    Article  CAS  Google Scholar 

  59. Svintsitskiy DA, Slavinskaya EM, Kibis LS, Stadnichenko AI, Fedorova EA, Stonkus OA, Korneeva EV, Romanenko AV, Boronin AI (2021) Effect of the support nature on the physicochemical properties of platinum catalysts for ammonia oxidation. J Struct Chem 62:598–612. https://doi.org/10.1134/S0022476621040120

    Article  CAS  Google Scholar 

  60. Perkas N, Teo J, Shen S, Wang Z, Highfield J, Zhong Z, Gedanken A (2011) Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Phys Chem Chem Phys 13:15690–15698. https://doi.org/10.1039/C1CP21870K

    Article  CAS  PubMed  Google Scholar 

  61. Hebenstreit ELD, Hebenstreit W, Geisler H, Ventrice CA Jr, Hite DA, Sprunger PT, Diebold U (2002) The adsorption of chlorine on TiO2(110) studied with scanning tunneling microscopy and photoemission spectroscopy. Surf Sci 505:336–348. https://doi.org/10.1016/S0039-6028(02)01385-7

    Article  CAS  Google Scholar 

  62. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  63. Matarrese R, Morandi S, Castoldi L, Villa P, Lietti L (2017) Removal of NOx and soot over Ce/Zr/K/Me (Me = Fe, Pt, Ru, Au) oxide catalysts. Appl Catal B 201:318–330. https://doi.org/10.1016/j.apcatb.2016.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank: Mrs. Ewa Bukowska for the XRD measurements, Mrs. Agnieszka Hojeńska for ICP-AES analysis, Dr. Marcin Kuśnierz for XPS study, Mrs. Dagmara Białowieska, Mrs. Patrycja Kokot vel Kokocińska and Agnieszka Siomra for technical assistance. This work was carried out within the Reintegration program of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund, Project No. POIR.04.04.00-00-5F33/18-00.

Author information

Authors and Affiliations

Authors

Contributions

KA: Methodology, Visualization, Investigation, Formal analysis, Funding acquisition, Writing—original draft, SS: Investigation, Methodology, Formal analysis, Writing, SZ: Methodology, Investigation, DS: Methodology, Investigation, PS: Methodology, Writing—review & editing, AK: Conceptualization, Supervision, Writing—review, JO: Conceptualization, Writing—review & editing, LK: Writing—review & editing.

Corresponding author

Correspondence to Leszek Kępiński.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamska, K., Smykała, S., Zieliński, S. et al. TiO2 Supported RuRe Nanocatalysts for Soot Oxidation: Effect of Re and the Support Nature. Catal Lett 153, 1372–1389 (2023). https://doi.org/10.1007/s10562-022-04066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04066-4

Keywords

Navigation