Skip to main content
Log in

Influence of Preparation Method on HZSM-5 Supported Cerium Catalyst for Alkylation of Phenol with Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The alkylation of phenol with methanol was studied in vapor phase over 5 wt% cerium supported on HZSM-5 catalyst prepared by three different methods, such as impregnation, ball mixing and solid-state ion-exchange. The catalytic activities are tested in a fixed-bed reactor, and the physicochemical properties of the catalyst are characterized with X-ray powder diffraction, scanning electron microscope, nitrogen physical sorption, Fourier Transform Infrared Spectrometer, Infrared spectra of pyridine adsorption, X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. It was found that the dispersion form of cerium was greatly affected by the preparation method, and difference in acidity affects catalytic performance in the alkylation reaction of phenol and methanol. Ball milling method generated greater amount of strong Brønsted acidic sites and lower specific surface area than other catalysts, which led to higher carbon deposition rate and lower catalyst activity. The catalyst prepared by impregnation method yields higher Lewis acid concentration (2.09 μmol/g) and more chemisorbed oxygen due to the increased Ce3+ concentration in the lattice, resulted in an improved o-cresol selectivity of 48%. Furthermore, the catalyst prepared by solid-phase ion-exchange method produces a catalyst with appropriate B/L ratio of 60.6 and large specific surface area of 389.0 m2/g, which yields the highest phenol conversion of 23%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kunjachan C, Kurian M (2020) J Chem Sci 132(1):55

    Article  CAS  Google Scholar 

  2. Xie JY, Zhuang WX, Wei Z (2017) ChemCatChem 9(6):1076–1083

    Article  CAS  Google Scholar 

  3. Santacesaria E, Grasso D, Gelosa D (1990) Appl Catal 64:83–99

    Article  CAS  Google Scholar 

  4. Alotaibi A, Bayahia H, Kozhevnikova EF (2015) ACS Catal 5(9):5512–5518

    Article  CAS  Google Scholar 

  5. Gandhe AR, Fernandes JB (2004) Catal Commun 5(2):89–94

    Article  CAS  Google Scholar 

  6. Wang Y, Zhou Z, Jia M (2005) Catal Lett 104(1–2):67–71

    CAS  Google Scholar 

  7. Huang H, Liu JY, Liu XX (2016) Fuel 182:373–381

    Article  CAS  Google Scholar 

  8. Sad ME, Padro CL, Apesteguia CR (2008) Appl Catal A 342(1–2):40–48

    Article  CAS  Google Scholar 

  9. Kanat N, Basu C (2013) React Kinet Mech Catal 109(2):489–496

    Article  CAS  Google Scholar 

  10. Kirichenko GN, Glazunova VI, Balaev AV (2008) Pet Chem 48(5):389–392

    Article  Google Scholar 

  11. Reddy KR, Ramesh K, Seela KK (2003) Catal Commun 4(3):112–117

    Article  CAS  Google Scholar 

  12. Ballarini N, Cavani F, Maselli L (2007) J Catal 251(2):423–436

    Article  CAS  Google Scholar 

  13. Chary KVR, Ramesh K, Vidyasagar G (2003) J Mol Catal A 198(1–2):195–204

    Article  CAS  Google Scholar 

  14. Wang Y, Song Y, Huo W (2012) Chem Eng J 181–182:630–635

    Article  Google Scholar 

  15. Tanabe K (1978) J Catal 53(1):1–8

    Article  CAS  Google Scholar 

  16. Sato S, Koizumi K, Nozaki F (1995) Appl Catal A 133(1):L7–L10

    Article  CAS  Google Scholar 

  17. Gandhe AR, Fernandes JB (2005) J Mol Catal A 226(2):171–177

    Article  CAS  Google Scholar 

  18. Sreekumar K, Sugunan S (2002) J Mol Catal A 185(1–2):259–268

    Article  CAS  Google Scholar 

  19. Fabrizio Cavani LM (2010) J Catal 2010(269):340–350

    Article  Google Scholar 

  20. Sugunan S, Renuka NK (2001) Indian J Chem Sect A 40(2):191–194

    Google Scholar 

  21. Sad ME, Padro CL (2010) J Mol Catal A 327(1–2):63–72

    Article  CAS  Google Scholar 

  22. Moon G, Böhringer W, O’connor CT (2004) Catal Today 97(4):291–295

    Article  CAS  Google Scholar 

  23. Chada RR, Enumula SS, Reddy KS (2020) Microporous Mesoporous Mater 2020:300

    Google Scholar 

  24. Barman S, Pradhan NC, Basu JK (2006) Catal Lett 111(1–2):67–73

    Article  CAS  Google Scholar 

  25. González Peña LF, Sad ME, Padró CL (2011) Catal Lett 141(7):939–947

    Article  Google Scholar 

  26. Xie JY, Zhuang WX, Yan N (2017) Chem Eng J 328:1031–1042

    Article  CAS  Google Scholar 

  27. Choi M, Na K, Kim J (2009) Nature 461(7261):246–249

    Article  CAS  PubMed  Google Scholar 

  28. Zhokh AA (2020). Int J Chem React Eng. https://doi.org/10.1515/ijcre-2019-0138

    Article  Google Scholar 

  29. Liu G, Tian Y, Zhang B (2019) J Hazard Mater 367:568–576

    Article  CAS  PubMed  Google Scholar 

  30. Saharan R, Halder G, Barman S (2019). Int J Chem React Eng. https://doi.org/10.1515/ijcre-2018-0224

    Article  Google Scholar 

  31. Tang M, Xu L, Fan M (2014) Int J Hydrogen Energy 39(28):15482–15496

    Article  CAS  Google Scholar 

  32. Lin LY, Wang CY, Bai HL (2015) Chem Eng J 264:835–844

    Article  CAS  Google Scholar 

  33. Xu YB, Suzuki Y, Zhang ZG (2013) Appl Catal A 452:105–116

    Article  CAS  Google Scholar 

  34. Fu TJ, Chang JW, Shao JA (2017) J Energy Chem 197:252–261

    Google Scholar 

  35. Ni YM, Sun AM, Wu XL (2011) Microporous Mesoporous Mater 143(2–3):435–442

    Article  CAS  Google Scholar 

  36. Rani P, Srivastava R (2019) ACS Sustain Chem Eng 7(11):9822–9833

    Article  CAS  Google Scholar 

  37. Xie YB, Wang LL, Ning P (2019) Appl Organomet Chem 33(3):e4745

    Article  Google Scholar 

  38. Goncalves ML, Dimitrov LD, Jordao MH (2008) Catal Today 133:69–79

    Article  Google Scholar 

  39. Vdovenko SI, Gerus II, Pagacz-Kostrzewa M (2018) Spectrochimica Acta A 199:130–140

    Article  CAS  Google Scholar 

  40. Xu WC, Chen BX, Jiang XD (2020) J Hazard Mater 387:9

    Article  Google Scholar 

  41. Li FK, France LJ, Cai ZP (2017) Appl Catal B 214:67–77

    Article  CAS  Google Scholar 

  42. Gopalakrishnan S, Viswanathan KR, Priya SV (2009) Microporous Mesoporous Mater 18(1–3):523–530

    Article  Google Scholar 

  43. Tynjl P, Pakkanen TT (1996) J Mol Catal A 110(2):153–161

    Article  Google Scholar 

  44. Pasupulety N, Al-Zahrani AA, Daous MA (2021) J Market Res 14:363–373

    CAS  Google Scholar 

  45. De Rivas B, Sampedro C, Ramos-Fernández EV (2013) Appl Catal A 456:96–104

    Article  Google Scholar 

  46. Rathi A, Basu S, Barman S (2019) J Mol Liq 283:867–878

    Article  CAS  Google Scholar 

  47. Bai Y, Wu W, Bian X (2017) RSC Adv 7(89):56447–56456

    Article  CAS  Google Scholar 

  48. Zhang RD, Zhang B, Shi ZY (2015) J Mol Catal A 398:223–230

    Article  CAS  Google Scholar 

  49. Dou BJ, Lv G, Wang C (2015) Chem Eng J 270:549–556

    Article  CAS  Google Scholar 

  50. Zhu ZZ, Lu GZ, Zhang ZG (2013) ACS Catal 3(6):1154–1164

    Article  CAS  Google Scholar 

  51. Zeng Y, Zhang S, Wang Y (2017) J Colloid Interface Sci 496:487–495

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Liu X, Xu Q (2021) Mol Catal 515:111857

    Article  CAS  Google Scholar 

  53. Bhongale P, Joshi S, Mali N (2021) Catal Rev 6:1–46

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Special Research Fund from the Beijing Institute of Petrochemical Technology (No. 15031862004-1), the National Natural Science Foundation of China (No. 21805012) and Beijing Natural Science Foundation (No. 2182015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingsheng Luo or Huanqiao Song.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Li, H., Song, H. et al. Influence of Preparation Method on HZSM-5 Supported Cerium Catalyst for Alkylation of Phenol with Methanol. Catal Lett 153, 1170–1179 (2023). https://doi.org/10.1007/s10562-022-04052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04052-w

Keywords

Navigation