Skip to main content

Advertisement

Log in

Photocatalytic Hydrogen Gas Production from NH3 and Alkylamine: Route to Zero Carbon Emission Energy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogen gas production generated from carbon-free molecules while utilizing solar energy provided a pathway for zero carbon emission energy. In photocatalytic hydrogen gas production, alcohol and oxygenated compounds as sacrificial agents are often added to accelerate the water splitting process while simultaneously decomposing to form H2 and CO2. However, the generation of CO2 requires an additional measure to curb carbon from being released into the atmosphere. This study evaluated the performance of TiO2 photocatalysts to generate hydrogen from NH3 solution as carbon-free molecules. The investigation is extended to alkylamines compounds as sacrificial agents. H2 is linearly produced from NH3 when using Pd/TiO2; however, the rate is reduced after a prolonged photocatalytic reaction. Alkylamines molecules are more susceptible for H2 production than NH3, with the reactivity increased from NH3 < triethylamine < diethylamine < ethylamine. Comparative analysis was also conducted on the amount of H2 and CO2 gases released from alkylamines and alcohols to indicate nitrogen-containing compounds viability as sacrificial agents for carbon-emission free sacrificial agents in photocatalytic water splitting reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E et al (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146

    Article  CAS  Google Scholar 

  2. Aziz M, Oda T, Morihara A, Kashiwagi T (2017) Combined nitrogen production, ammonia synthesis, and power generation for efficient hydrogen storage. Energy Procedia 143:674–679

    Article  CAS  Google Scholar 

  3. Singh AK, Singh S, Kumar A (2016) Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal Sci Technol 6(1):12–40

    Article  Google Scholar 

  4. Kennedy J, Bahruji H, Bowker M, Davies PR, Bouleghlimat E, Issarapanacheewin S (2018) Hydrogen generation by photocatalytic reforming of potential biofuels: polyols, cyclic alcohols, and saccharides. J Photochem Photobiol, A 356:451–456

    Article  CAS  Google Scholar 

  5. Bahruji H, Bowker M, Davies PR, Pedrono F (2011) New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Appl Catal B 107(1):205–209

    Article  CAS  Google Scholar 

  6. Guo J, Chen P (2017) Catalyst: NH3 as an energy carrier. Chem 3(5):709–712

    Article  CAS  Google Scholar 

  7. Hill AK, Torrente-Murciano L (2015) Low temperature H2 production from ammonia using ruthenium-based catalysts: Synergetic effect of promoter and support. Appl Catal B 172–173:129–135

    Article  Google Scholar 

  8. Hattori M, Iijima S, Nakao T, Hosono H, Hara M (2020) Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat Commun 11(1):2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G (2018) Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl Catal B 226:162–181

    Article  CAS  Google Scholar 

  10. Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal Lett 72(3):197–201

    Article  CAS  Google Scholar 

  11. Wang L, Yi Y, Zhao Y, Zhang R, Zhang J, Guo H (2015) NH3 Decomposition for H2 generation: effects of cheap metals and supports on plasma-catalyst synergy. ACS Catal 5(7):4167–4174

    Article  CAS  Google Scholar 

  12. Obata K, Kishishita K, Okemoto A, Taniya K, Ichihashi Y, Nishiyama S (2014) Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Appl Catal B 160–161:200–203

    Article  Google Scholar 

  13. Shiraishi Y, Toi S, Ichikawa S, Hirai T (2020) Photocatalytic NH3 splitting on TiO2 particles decorated with Pt–Au bimetallic alloy nanoparticles. ACS Appl Nano Mater 3(2):1612–1620

    Article  CAS  Google Scholar 

  14. Lee J, Park H, Choi W (2002) Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water. Environ Sci Technol 36(24):5462–5468

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Choi W (2004) Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: dealkylation and N-Alkylation. Environ Sci Technol 38(14):4026–4033

    Article  CAS  PubMed  Google Scholar 

  16. Matsushita Y, Ohba N, Suzuki T, Ichimura T (2008) N-Alkylation of amines by photocatalytic reaction in a microreaction system. Catal Today 132(1–4):153–158

    Article  CAS  Google Scholar 

  17. Kim S, Choi W (2002) Kinetics and mechanisms of photocatalytic degradation of (CH3)nNH4-n+ (0 ≤ n ≤ 4) in TiO2 suspension: the role of OH radicals. Environ Sci Technol 36(9):2019–2025

    Article  CAS  PubMed  Google Scholar 

  18. Benkhaya S, M’Rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6(1):e03271

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liao L-F, Wu W-C, Chuang C-C, Lin J-L (2001) FTIR study of adsorption and reactions of methylamine on powdered TiO2. J Phys Chem B 105(25):5928–5934

    Article  CAS  Google Scholar 

  20. Kachina A, Preis S, Lluellas GC, Kallas J (2007) Gas-phase and aqueous photocatalytic oxidation of methylamine: the reaction pathways. Int J Photoenergy 2007:1–6

    Google Scholar 

  21. Yang R, Song K, He J, Fan Y, Zhu R (2019) Photocatalytic hydrogen production by RGO/ZnIn2S4 under visible light with simultaneous organic amine degradation. ACS Omega 4(6):11135–11140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Zhang K, Peng S, Lu G, Li S (2012) Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation. J Mol Catal A: Chem 363–364:354–361

    Article  Google Scholar 

  23. Langhammer C, Yuan Z, Zorić I, Kasemo B (2006) Plasmonic properties of Supported Pt and Pd nanostructures. Nano Lett 6(4):833–838

    Article  CAS  PubMed  Google Scholar 

  24. Jiménez JA (2019) Thermal effects on the surface plasmon resonance of Cu nanoparticles in phosphate glass: impact on Cu+ luminescence. Nanoscale Adv 1(5):1826–1832

    Article  PubMed  PubMed Central  Google Scholar 

  25. Creaser CSSJR (1990) Luminescence spectroscopy. In: Andrews DL (ed) Perspectives in modern chemical spectroscopy. Springer, Berlin, Heidelberg

    Google Scholar 

  26. Bahruji H, Abdullah N, Rogers S, Wells P, Catlow CRA, Bowker M (2019) Pd local structure and size correlations on the activity of Pd/ TiO2 for photocatalytic reforming of methanol. Phys Chem Chem Phys 21:16154–16160

    Article  PubMed  Google Scholar 

  27. Khan MR, Chuan TW, Yousuf A, Chowdhury MNK, Cheng CK (2015) Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal Sci Technol 5(5):2522–2531

    Article  CAS  Google Scholar 

  28. Rothenberger G, Moser J, Graetzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107(26):8054–8059

    Article  CAS  Google Scholar 

  29. Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8(4):544–548

    Article  CAS  Google Scholar 

  30. Liu G, Li F, Chen Z, Lu GQ, Cheng H-M (2006) The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction. J Solid State Chem 179(1):331–335

    Article  CAS  Google Scholar 

  31. Qian J, Cui G, Jing M, Wang Y, Zhang M, Yang J (2012) Hydrothermal synthesis of nitrogen-doped titanium dioxide and evaluation of its visible light photocatalytic activity. Int J Photoenergy 2012:198497

    Article  Google Scholar 

  32. Lin Y-H, Weng C-H, Srivastav AL, Lin Y-T, Tzeng J-H (2015) Facile synthesis and characterization of N-doped TiO2 photocatalyst and its visible-light activity for photo-oxidation of ethylene. J Nanomater 2015:807394

    Article  Google Scholar 

  33. Chen H, Nambu A, Graciani J, Hanson JC et al (2007) Reaction of NH3 with titania: N-doping of the oxide and TiN formation. J Phys Chem C. 111(3):1366–72

    Article  CAS  Google Scholar 

  34. Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M (2020) Dimethyl sulfoxide: yesterday’s solvent, today’s reagent. Adv Synth Catal 362(1):65–86

    Article  CAS  Google Scholar 

  35. Lee Y, Lee C, Yoon J (2004) Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H2O2 process. Water Res 38(10):2579–2588

    Article  CAS  PubMed  Google Scholar 

  36. Niu X, Du Y-e, Liu Y, Qi H, An J, Yang X et al (2017) Hydrothermal synthesis and formation mechanism of the anatase nanocrystals with co-exposed high-energy 001}, {010 and [111]-facets for enhanced photocatalytic performance. RSC Adv 7(40):24616–27

    Article  CAS  Google Scholar 

  37. Liu Z, Jian Z, Fang J, Xu X, Zhu X, Wu S (2012) Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide. Int J Photoenergy 2012:702503

    Article  Google Scholar 

  38. Melián EP, López CR, Méndez AO, Díaz OG, Suárez MN, Doña Rodríguez JM et al (2013) Hydrogen production using Pt-loaded TiO2 photocatalysts. Int J Hydrogen Energy 38(27):11737–11748

    Article  Google Scholar 

  39. Wu G, Chen T, Su W, Zhou G, Zong X, Lei Z et al (2008) H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst. Int J Hydrogen Energy 33(4):1243–1251

    Article  CAS  Google Scholar 

  40. Chen K, Xie K, Long Q, Deng L, Fu Z, Xiao H et al (2017) Fabrication of core–shell Ag@pDA@HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Adv 7(47):29368–29377

    Article  CAS  Google Scholar 

  41. Suzuki S, Yamaguchi Y, Onishi H, Sasaki T, Fukui K-I, Yasuhiro I (1998) Study of pyridine and its derivatives adsorbed on a TiO2(110)-(1x1)surface by means of STM, TDS, XPS and MD calculation in relation to surface acid-base interaction. J Chem Soc Faraday Trans 94(1):161–6

    Article  Google Scholar 

  42. Farfan-Arribas E, Madix RJ (2003) Characterization of the acid-base properties of the TiO2(110) surface by adsorption of amines. J Phys Chem B 107(14):3225–3233

    Article  CAS  Google Scholar 

  43. Jiang Z, Fang T (2019) Probing the effect of Pd coverage towards NH3 decomposition on Cu(1 0 0) surface. Chem Phys Lett 729:30–36

    Article  CAS  Google Scholar 

  44. Walter D, Armentrout PB (1998) Sequential bond dissociation energies of M+(NH3)x (x = 1–4) for M = Ti−Cu. J Am Chem Soc 120(13):3176–3187

    Article  CAS  Google Scholar 

  45. Sabatier P (2011) Catalysis in organic chemistry. Translated by E. Emmet Reid; Nabu Press

    Google Scholar 

  46. Ganley JC, Thomas FS, Seebauer EG, Masel RI (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96(3):117–122

    Article  CAS  Google Scholar 

  47. Hvelplund P, Kurtén T, Støchkel K, Ryding MJ, Nielsen SB, Uggerud E (2010) Stability and structure of protonated clusters of ammonia and water, H+(NH3)m (H2O)n. J Phys Chem A 114(27):7301–7310

    Article  CAS  PubMed  Google Scholar 

  48. Bahruji H, Bowker M, Davies PR, Al-Mazroai LS, Dickinson A, Greaves J et al (2010) Sustainable H2 gas production by photocatalysis. J Photochem Photobiol, A 216(2):115–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Brunei Darussalam FIC Grant for H.Bahruji (UBD/RSCH/1.9/FICBF(b)/2021/011) and Ministry of Education Brunei Darussalam for the scholarship to S. A. Razak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasliza Bahruji.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Razak, S., Mahadi, A.H., Thotagamuge, R. et al. Photocatalytic Hydrogen Gas Production from NH3 and Alkylamine: Route to Zero Carbon Emission Energy. Catal Lett 153, 1013–1023 (2023). https://doi.org/10.1007/s10562-022-04049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04049-5

Keywords

Navigation