Skip to main content
Log in

Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CO2 hydrogenation to methanol has been extensively studied over Cu-based catalysts. H2O is an inevitable by-product during this reaction process. The essential role of H2O in determining the catalytic performance remains controversial. Herein, three kinds of common Cu-based catalysts (Cu/ZnO, Cu/Al2O3, Cu/SiO2) were selected to investigate the effect of H2O on the reaction performance over the range of 190 °C–290 °C in detail. Of all catalysts tested, it was noted that adding H2O showed substantially different effects on the methanol selectivity compared with the normal reaction. The representative Cu/SiO2 catalyst was further selected to investigate the role of H2O through a series of characterizations including BET, XRD, TEM, H2-TPR and XPS, etc. Moreover, in situ FT-IR experiment was further conducted to understand the effect of H2O on the reaction pathways. The results indicated that H2O played the significant role on regulating the methanol selectivity by inhibiting and promoting the transformation from monodentate carbonate to bidentate formate over all the Cu-based catalysts at low (190–230 °C) and high (230–290 °C) temperature ranges, respectively. This preliminary study offers directions for the optimization of experimental conditions for the H2O involving reactions and provides referable experience for the further exploration and utilization of H2O effects on related fields as well.

Graphical Abstract

The addition of H2O shows a significant characteristic effect on methanol selectivity by inhibiting and promoting the conversion of monodentate carbonate to bidentate formate at low (190–230 ℃) and high (230–290 ℃) temperatures ranges, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huš M, Kopač D, Štefančič NS, Jurković DL, Dasireddy VDBC, Likozar B (2017) Sci Technol 7:5900–5913

    Google Scholar 

  2. Jiang X, Nie XW, Guo XW, Song CS, Chen JG (2020) Chem Rev 120:7984–8034

    Article  CAS  PubMed  Google Scholar 

  3. Wu J, Saito M, Takeuch M, Watanabe T (2001) Appl Catal A 218:235–240

    Article  CAS  Google Scholar 

  4. Kondrat SA, Smith PJ, Lu L, Bartley JK, Taylor SH, Spencer MS, Kelly GJ, Park CW, Kiely CJ, Hutchings GJ (2018) Catal Today 317:12–20

    Article  CAS  Google Scholar 

  5. Wang DS, Han YZ, Tan YS, Tsubaki N (2009) Fuel Process Technol 90:446–451

    Article  CAS  Google Scholar 

  6. Liu AN, Liu LC, Cao Y, Wang JM, Si R, Gao F, Dong L (2019) ACS Catal 9:9840–9851

    Article  CAS  Google Scholar 

  7. Zhao YF, Yang Y, Mims C, Peden CHF, Li J, Mei DH (2011) J Catal 281:199–211

    Article  CAS  Google Scholar 

  8. Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT (2013) J Catal 298:10–17

    Article  CAS  Google Scholar 

  9. Liu G, Willcox D, Garland M, Kung HH (1999) Ind Eng Chem Res 38:3868–3872

    Article  Google Scholar 

  10. Li GN, Wang B, Resasco DE (2020) ACS Catal 10:5373–5382

    Article  CAS  Google Scholar 

  11. Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2008) J Am Chem Soc 130:2793–2797

    Article  CAS  PubMed  Google Scholar 

  12. Andersson K, Ketteler G, Bluhm H, Yamamoto S, Ogasawara H, Pettersson LGM, Salmeron M (2007) J Phys Chem C 111:14493–14499

    Article  CAS  Google Scholar 

  13. Si CC, Ban HY, Chen K, Wang XY, Cao RW, Yi Q, Qin ZF, Shi LJ, Li Z, Cai WJ, Li CM (2020) Appl Catal A 594:117466–117475

    Article  CAS  Google Scholar 

  14. Díez-Ramírez J, Dorado F, Raquel de la Osa A, Valverde JL, Sánchez P (2017) Ind Eng Chem Res 56:1979–1987

    Article  Google Scholar 

  15. Lei H, Nie RF, Wu GQ, Hou ZY (2015) Fuel 154:161–166

    Article  CAS  Google Scholar 

  16. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) Catal Commun 12:1095–1098

    Article  CAS  Google Scholar 

  17. Yuan ZL, Wang LN, Wang JH, Xia SX, Chen P, Hou ZY, Zheng XM (2011) Appl Catal B 101:431–440

    Article  CAS  Google Scholar 

  18. van den Berg R, Parmentier TE, Elkjær CF, Gommes CJ, Sehested J, Helveg S, de Jongh PE, de Jong KP (2015) ACS Catal 5:4439–4448

    Article  Google Scholar 

  19. Dai YH, Li GN, Resasco DE, Yang YH (2021) Chem Catal 1:962–965

    Article  CAS  Google Scholar 

  20. Li GN, Dai YH, Yang YH, Resasco DE (2021) Chem Catal 1:959–961

    Article  CAS  Google Scholar 

  21. Liu P, Hensen EJM (2013) J Am Chem Soc 135:14032–14035

    Article  CAS  PubMed  Google Scholar 

  22. Deutsch KL, Shanks BH (2012) J Catal 285:235–241

    Article  CAS  Google Scholar 

  23. Bu YB, Weststrate CJ, Niemantsverdriet JW, Fredriksson HOA (2016) ACS Catal 6:7994–8003

    Article  CAS  Google Scholar 

  24. Ye RP, Lin L, Yang JX, Sun ML, Li F, Li B, Yao YG (2017) J Catal 350:122–132

    Article  CAS  Google Scholar 

  25. Yang Y, Mims CA, Disselkamp RS, Kwak J, Peden CHF, Campbell CT (2010) J Phys Chem C 114:17205–17211

    Article  CAS  Google Scholar 

  26. Turek AM, Wachs IE, DeCanio E (1992) J Phys Chem 96:5000–5007

    Article  CAS  Google Scholar 

  27. Liu XL, Wang MH, Zhou C, Zhou W, Cheng K, Kang JC, Zhang QH, Deng WP, Wang Y (2018) Chem Commun 54:140–143

    Article  CAS  Google Scholar 

  28. Liu B, Li CM, Zhang GQ, Yao XS, Chuang SSC, Li Z (2018) ACS Catal 8:10446–10456

    Article  CAS  Google Scholar 

  29. Rhodes MD, Bell AT (2005) J Catal 233:198–209

    Article  CAS  Google Scholar 

  30. Neophytides SG, Marchi AJ, Froment GF (1992) Appl Catal 86:45–64

    Article  CAS  Google Scholar 

  31. Yang YX, Evans J, Rodriguez JA, White MG, Liu P (2010) Phys Chem Chem Phys 12:9909–9917

    Article  CAS  PubMed  Google Scholar 

  32. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  33. Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Catal Lett 26:373–381

    Article  CAS  Google Scholar 

  34. Rasmussen PB, Kazuta M, Chorkendorff I (1994) Surf Sci 318:267–280

    Article  CAS  Google Scholar 

  35. Bahmanpour AM, Héroguel F, Kılıç M, Baranowski CJ, Schouwink P, Röthlisberger U, Luterbacher JS, Kröcher O (2020) Appl Catal B 266:118669

    Article  CAS  Google Scholar 

  36. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R (2004) J Phys Chem B 108:20240–20246

    Article  CAS  Google Scholar 

  37. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  38. Abdel-Mageed AM, Eckle S, Behm RJ (2015) J Am Chem Soc 137:8672–8675

    Article  CAS  PubMed  Google Scholar 

  39. Takeishi K, Wagatsuma Y, Ariga H, Kon K, Shimizu KI (2017) ACS Sustain Chem Eng 5:3675–3680

    Article  CAS  Google Scholar 

  40. Wang YH, Gao WG, Li KZ, Zheng YN, Xie ZH, Na W, Chen JGG, Wang H (2020) Chemistry 6:419–430

    Article  CAS  Google Scholar 

  41. Nie XW, Jiang X, Wang HZ, Luo WJ, Janik MJ, Chen YG, Guo XW, Song CS (2018) ACS Catal 8:4873–4892

    Article  CAS  Google Scholar 

  42. Chang CR, Huang ZQ, Li J (2016) Wires Comput Mol Sci 6:679–693

    Article  CAS  Google Scholar 

  43. Xu DY, Wu PP, Yang B (2019) J Phys Chem C 123:8959–8966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21676176), the Foundation of State Key Laboratory of Coal Conversion (Grant No. J20-21-610), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D011016), Graduate Innovation Program of Shanxi Province, China (Grant No. 2021Y180 and Grant No. 2021Y249 ) and the fund of State Key Laboratory of Catalysis in DICP, China (Grant No. N-15-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wang, Y., Wang, X. et al. Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol. Catal Lett 153, 1046–1056 (2023). https://doi.org/10.1007/s10562-022-04047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04047-7

Keywords

Navigation