Skip to main content

Advertisement

Log in

Enhanced Photogenerated Hole Oxidation Capability of Li2SnO3 by Sb Incorporation in Photocatalysis Through Band Structure Modification

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Modulating the band edge position of a photocatalyst is important in photocatalysis. In this study, a more positive valence band position was realized by doping Sb in Li2SnO3. The downshifted valence band position was mainly attributed to the relatively low Sb energy level resulting from its higher electronegativity. Such band structure modification resulted in a stronger photo-oxidative capability for photogenerated holes (h+), leading to an enhanced photodegradation rate toward tetracycline (TC) solution. For Li2Sn0.9Sb0.1O3, the efficiency reached 74% within 30 min, which was approximately 2.5 times that of Li2SnO3. Radical trapping experiments showed that h+ played the dominant role in the photodegradation process. Finally, the photodegradation pathway was analyzed using liquid chromatography–mass spectrometry (LC–MS). These results might provide important insight for designing photocatalysts with high efficiency through band structure modification.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang XG, Wang DW (2018) ACS Appl Energy Mater 1:6657–6693

    Article  CAS  Google Scholar 

  2. Huang HW, Pradhan B, Hofkens J, Roeffaers MBJ, Steele JA (2020) ACS Energy Lett 5:1107–1123

    Article  CAS  Google Scholar 

  3. Nosaka Y, Nosaka AY (2017) Chem Mater 117:11302–11336

    CAS  Google Scholar 

  4. Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L (2018) ACS Catal 8:11191–11225

    Article  CAS  Google Scholar 

  5. Lei H, He QS, Wu MX, Xu YY, Sun PF, Dong XP (2022) J Hazard Mater 421:126696–126905

    Article  CAS  PubMed  Google Scholar 

  6. Xu ZH, Huang C, Wang L, Pan XX, Qin L, Guo XW, Zhang GL (2015) Ind Eng Chem Res 54:4593–4602

    Article  CAS  Google Scholar 

  7. Djellabi R, Ordonez MF, Conte F, Falletta E, Bianchi CL, Rossetti I (2022) J Hazard Mater 421:126792–126818

    Article  CAS  PubMed  Google Scholar 

  8. Shangguan YZ, Zheng RJ, Ge QY, Feng XZ, Wang RH, Zhou YH, Luo SY, Duan LL, Lin J, Chen H (2022) J Hazard Mater 421:126701–126710

    Article  CAS  PubMed  Google Scholar 

  9. Boltersdorf J, Maggard PA (2013) ACS Catal 3:2547–2555

    Article  CAS  Google Scholar 

  10. Lu BC, Zheng XY, Li ZS (2019) ACS Appl Mater Interfaces 11:10163–10170

    Article  CAS  PubMed  Google Scholar 

  11. Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R (2016) J Am Chem Soc 138:2082–2085

    Article  CAS  PubMed  Google Scholar 

  12. Xu XX, Wang R, Sun XQ, Lv ML, Ni S (2020) ACS Catal 10:9889–9898

    Article  CAS  Google Scholar 

  13. Suzuki H, Tomita O, Higashia M, Abe R (2016) J Mater Chem A 4:14444–14452

    Article  CAS  Google Scholar 

  14. Ida S, Ishihara T (2014) J Phys Chem Lett 5:2533–2542

    Article  CAS  PubMed  Google Scholar 

  15. Mogi H, Kato K, Yasuda SH, Kanazawa T, Miyoshi A, Nishioka S, Oshima T, Tang Y, Yokoi T, Nozawa S, Yamakata A, Maeda K (2021) Chem Mater 33:6443–6452

    Article  CAS  Google Scholar 

  16. Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) J Catal 120:337–352

    Article  CAS  Google Scholar 

  17. Hwang DW, Kim HG, Lee JS, Kim J, Li W, Oh HS (2005) Phys Chem B 109:2093–2102

    Article  CAS  Google Scholar 

  18. Kudo A, Kato H, Nakagawa S (2000) J Phys Chem B 104:571–575

    Article  CAS  Google Scholar 

  19. Kim HG, Hwang DW, Lee JS (2004) J Am Chem Soc 126:8912–8913

    Article  CAS  PubMed  Google Scholar 

  20. Hailili R, Dong GH, Ma YC, Jin S, Wang CY, Xu T (2017) Ind Eng Chem Res 56:2908–2916

    Article  CAS  Google Scholar 

  21. Kim D, Yeo CH, Shin D, Choi H, Kim S, Park N, Han SS (2017) Phys Rev B 95:045209–045214

    Article  Google Scholar 

  22. Li YY, Yang QM, Wang ZM, Wang GY, Zhang B, Zhang Q, Yang DF (2018) lnorg Chem Front 5:3005–3016

    Article  CAS  Google Scholar 

  23. Li YY, Wu MJ, Yang DF, Zeng HL, Zhang T, Shen JF, Zhang B, Li QQ (2019) Catalysts 9:712–725

    Article  Google Scholar 

  24. Tang G, Xiao ZW, Hosono H, Kamiya T, Fang D, Hong JW (2018) J Phys Chem Lett 9:43–48

    Article  CAS  PubMed  Google Scholar 

  25. Wang XW, Zhou CX, Yin LC, Zhang RB, Liu G (2019) ACS Sustain Chem Eng 7:7900–7907

    Article  CAS  Google Scholar 

  26. Tian F, Zhao HP, Dai Z, Cheng G, Chen R (2016) Ind Eng Chem Res 55:4969–4978

    Article  CAS  Google Scholar 

  27. Liu P, Nisar J, Sa B, Pathak B, Ahuja R (2013) J Phys Chem C 117:13845–13852

    Article  CAS  Google Scholar 

  28. Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ (2016) Angew Chem Int Ed 55:6826–6841

    Article  CAS  Google Scholar 

  29. Larquet C, Nguyen A-M, Glais E, Paulatto L, Sassoye C, Selmane M, Lecante P, Maheu C, Geantet C, Cardenas L, Chaneac C, Gauzzi A, Sanchez C, Carenco S (2019) Chem Mater 31:5014–5023

    Article  CAS  Google Scholar 

  30. Radha R, Kulangara RV, Elaiyappillai E, Sridevi J, Balakumar S (2019) Cryst Growth Des 19:6224–6238

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmülle J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  32. Blochl PE (1994) Phys Rev B 50:17953–17979

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  35. Maintz S, Deringer V, Tchougréeff AL, Dronskowski R (2016) J Comput Chem 37:1030–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kreuzburg G, Stewner E, Hoppe R (1971) Z Fuer Anorg Und Allg Chem 379:242–254

    Article  Google Scholar 

  37. You QQ, Fu YH, Ding ZX, Wu L, Wang XX, Li ZH (2011) Dalton Trans 40:5774–5780

    Article  CAS  PubMed  Google Scholar 

  38. Qin L, Cai PQ, Chen CL, Cheng H, Wang J, Kim S, Seo HJ (2016) J Phys Chem C 120:12989–12998

    Article  CAS  Google Scholar 

  39. Guo H, Niu CG, Zhang L, Wen XJ, Liang C, Zhang XG, Guan DL, Tang N, Zeng GM (2018) ACS Sustain Chem Eng 6:8003–8018

    Article  CAS  Google Scholar 

  40. Tang G, Ghosez P, Hong JW (2021) J Phys Chem Lett 12:4227–4239

    Article  CAS  PubMed  Google Scholar 

  41. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Sol Energy Mater Sol Cells 90:1773–1787

    Article  CAS  Google Scholar 

  42. Ozacar M (2006) J Hazard Mater B137:218–225

    Article  Google Scholar 

  43. Li YY, Diao Y, Wang XY, Tian XF, Hu Y, Zhang B, Yang DF (2020) Inorg Chem 59:13136–13143

    Article  CAS  PubMed  Google Scholar 

  44. Qi JC, Wang SY, Wang JJ, Umezawa N, Blatov VA, Hosono H (2021) J Phys Chem Lett 12:4823–4832

    Article  CAS  PubMed  Google Scholar 

  45. Wu SQ, Hu HY, Lin Y, Zhang JL, Hu YH (2020) Chem Eng J 382:122842–122851

    Article  CAS  Google Scholar 

  46. Zhang Y (2020) ZhouJB, Chen JH, Feng XQ, Cai WQ. J Hazard Mater 392:122315–122325

    Article  CAS  PubMed  Google Scholar 

  47. Wang YX, Rao L, Wang PF, Shi ZY, Zhang LX (2020) Appl Catal B 262:118308–118319

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the Basic and Frontier Re-search Project of Chongqing Science and Technology Commission (No. cstc2021jcyj-msxmX1181), the Project of Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJZD-K201901602, KJQN201901617, KJQN202001613). This work was financially supported by Chongqing Elite Innovation and Entrepreneurship Demonstration Team (CQYC201903178), the Children's Research Institute of School Planning and Construction Development Center for Chongqing University of Education (No. CRIKT202001), the Cultivation for National Science Foundation of Chongqing University of Education (No. 18GZKP01) and the key Laboratory of Green Synthesis and Analysis, Chongqing University of Education (No. 17PTXM121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingfeng Yang or Yuanyuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Pu, H., Zeng, H. et al. Enhanced Photogenerated Hole Oxidation Capability of Li2SnO3 by Sb Incorporation in Photocatalysis Through Band Structure Modification. Catal Lett 153, 1109–1119 (2023). https://doi.org/10.1007/s10562-022-04046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04046-8

Keywords

Navigation