Skip to main content

Advertisement

Log in

Combining Ni3P and Lewis Acid–Base Pair as a High-Performance Catalyst for Amination of 1-Octanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni phosphide and Lewis acid–base pair site of Al2O3 were combined as highly efficient catalyst for direct amination of 1-octanol to 1-octylamine. Due to the higher dehydrogenation activity and the site isolation effect, Ni3P/Al2O3-TPP prepared by organophosphorus was 4.0 times more active than Ni/Al2O3 and increased the selectivity to 1-octylamine from 71.4 to 92.8% at 0.4 MPa NH3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Markets And Markets Fatty Amines Market worth $4.0 billion by 2024. https://www.marketsandmarkets.com/PressReleases/amines.asp

  2. Barrault J, Pouilloux Y (1997) Synthesis of fatty amines. Selectivity control in presence of multifunctional catalysts. Catal Today 37:137–153

    Article  CAS  Google Scholar 

  3. Wang Y, Furukawa S, Fu X, Yan N (2020) Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal 10:311–335

    Article  Google Scholar 

  4. Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV (2020) Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 49:6273–6328

    Article  CAS  PubMed  Google Scholar 

  5. Deng W, Wang Y, Zhang S, Gupta KM, Hulsey MJ, Asakura H, Liu L, Han Y, Karp EM, Beckham GT, Dyson PJ, Jiang J, Tanaka T, Wang Y, Yan N (2018) Catalytic amino acid production from biomass-derived intermediates. Proc Natl Acad Sci USA 115:5093–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Furukawa S, Song S, He Q, Asakura H, Yan N (2020) Catalytic production of alanine from waste glycerol. Angew Chem Int Ed 59:2289–2293

    Article  CAS  Google Scholar 

  7. Irrgang T, Kempe R (2020) Transition-metal-catalyzed reductive amination employing hydrogen. Chem Rev 120:9583–9674

    Article  CAS  PubMed  Google Scholar 

  8. Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M (2011) The catalytic amination of alcohols. ChemCatChem 3:1853–1864

    Article  Google Scholar 

  9. Niu F, Xie S, Yan Z, Kusema BT, Ordomsky VV, Khodakov AY (2020) Alcohol amination over titania-supported ruthenium nanoparticles. Catal Sci Technol 10:4396–4404

    Article  CAS  Google Scholar 

  10. Liang G, Zhou Y, Zhao J, Khodakov AY, Ordomsky VV (2018) Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles. ACS Catal 8:11226–11234

    Article  CAS  Google Scholar 

  11. Fang L, Yan Z, Wu J, Bugaev A, Lamberti C, Pera-Titus M (2021) Highly selective Ru/HBEA catalyst for the direct amination of fatty alcohols with ammonia. Appl Catal B 286:119942

    Article  CAS  Google Scholar 

  12. Fu X-P, Han P, Wang Y-Z, Wang S, Yan N (2021) Insight into the roles of ammonia during direct alcohol amination over supported Ru catalysts. J Catal 399:121–131

    Article  CAS  Google Scholar 

  13. Tomer A, Wyrwalski F, Przybylski C, Paul J-F, Monflier E, Pera-Titus M, Ponchel A (2017) Facile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: towards highly active and robust catalysts for the direct amination of alcohols. J Catal 356:111–124

    Article  CAS  Google Scholar 

  14. Tomer A, Kusema BT, Paul J-F, Przybylski C, Monflier E, Pera-Titus M, Ponchel A (2018) Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols. J Catal 368:172–189

    Article  CAS  Google Scholar 

  15. Tomer A, Yan Z, Ponchel A, Pera-Titus M (2017) Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. J Catal 356:133–146

    Article  CAS  Google Scholar 

  16. Niu F, Bahri M, Ersen O, Yan Z, Kusema BT, Khodakov AY, Ordomsky VV (2020) A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts. Green Chem 22:4270–4278

    Article  CAS  Google Scholar 

  17. Tong T, Guo W, Liu X, Guo Y, Pao C-W, Chen J-L, Hu Y, Wang Y (2019) Dual functions of CoOx decoration in PtCo/CeO2 catalysts for the hydrogen-borrowing amination of alcohols to primary amines. J Catal 378:392–401

    Article  CAS  Google Scholar 

  18. Ibanez J, Araque-Marin M, Paul S, Pera-Titus M (2019) Direct amination of 1-octanol with NH3 over Ag-Co/Al2O3: promoting effect of the H2 pressure on the reaction rate. Chem Eng J 358:1620–1630

    Article  CAS  Google Scholar 

  19. Ibanez J, Kusema BT, Paul S, Pera-Titus M (2018) Ru and Ag promoted Co/Al2O3 catalysts for the gas-phase amination of aliphatic alcohols with ammonia. Catal Sci Technol 8:5858–5874

    Article  CAS  Google Scholar 

  20. Dumon AS, Wang T, Ibanez J, Tomer A, Yan Z, Wischert R, Sautet P, Pera-Titus M, Michel C (2018) Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by “spectator” ammonia adsorbates. Catal Sci Technol 8:611–621

    Article  CAS  Google Scholar 

  21. Wang T, Ibanez J, Wang K, Fang L, Sabbe M, Michel C, Paul S, Pera-Titus M, Sautet P (2019) Rational design of selective metal catalysts for alcohol amination with ammonia. Nat Catal 2:773–779

    Article  CAS  Google Scholar 

  22. Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681–703

    Article  CAS  PubMed  Google Scholar 

  23. Guillena G, Ramon DJ, Yus M (2010) Hydrogen autotransfer in the n-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem Rev 110:1611–1641

    Article  CAS  PubMed  Google Scholar 

  24. Baiker A, Kijenski J (1985) Catalytic synthesis of higher aliphatic amines from the corresponding alcohols. Catal Rev Sci Eng 27:653–697

    Article  CAS  Google Scholar 

  25. Shimizu K, Kon K, Shimura K, Hakim S (2013) Acceptor-free dehydrogenation of secondary alcohols by heterogeneous cooperative catalysis between Ni nanoparticles and acid-base sites of alumina supports. J Catal 300:242–250

    Article  CAS  Google Scholar 

  26. Shimizu K-I, Kon K, Onodera W, Yamazaki H, Kondo JN (2013) Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal 3:112–117

    Article  CAS  Google Scholar 

  27. Ho CR, Defalque V, Zheng S, Bell AT (2019) Propanol amination over supported nickel catalysts: reaction mechanism and role of the support. ACS Catal 9:2931–2939

    Article  CAS  Google Scholar 

  28. Liu Y, McCue AJ, Li D (2021) Metal phosphides and sulfides in heterogeneous catalysis: electronic and geometric effects. ACS Catal 11:9102–9127

    Article  CAS  Google Scholar 

  29. Mitsudome T, Sheng M, Nakata A, Yamasaki J, Mizugaki T, Jitsukawa K (2020) A cobalt phosphide catalyst for the hydrogenation of nitriles. Chem Sci 11:6682–6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang BL, Han CB, Jiang N (2020) Synthesis of Ni2P/Al2O3 utilizing triphenylphosphine (TPP) as the phosphorus source for hydrodeoxygenation of benzofuran. New J Chem 44:7577–7582

    Article  CAS  Google Scholar 

  31. Liu B, Huang N, Wang Y, Lan X, Wang T (2021) Promotion of inorganic phosphorus on Rh catalysts in styrene hydroformylation: geometric and electronic effects. ACS Catal 11:1787–1796

    Article  CAS  Google Scholar 

  32. Lan X, Pestman R, Hensen EJM, Weber T (2021) Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides—the influence of metal–phosphorus stoichiometry on catalytic properties. J Catal 403:181–193

    Article  CAS  Google Scholar 

  33. Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu Y-Y, Shi C, Liu J, Wang W, Wang A (2021) A bifunctional Ni3P/gamma-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 396:324–332

    Article  CAS  Google Scholar 

  34. Yu Z, Wang A, Liu S, Yao Y, Sun Z, Li X, Liu Y, Wang Y, Camaioni DM, Lercher JA (2019) Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides. Catal Today 319:48–56

    Article  CAS  Google Scholar 

  35. Zhang Z, Tang M, Chen J (2016) Effects of P/Ni ratio and Ni content on performance of gamma-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons. Appl Surf Sci 360:353–364

    Article  CAS  Google Scholar 

  36. Gao G, Shao Y, Gao Y, Wei T, Gao G, Zhang S, Wang Y, Chen Q, Hu X (2021) Synergetic effects of hydrogenation and acidic sites in phosphorus-modified nickel catalysts for the selective conversion of furfural to cyclopentanone. Catal Sci Technol 11:575–593

    Article  CAS  Google Scholar 

  37. Li X, Feng JP, Guo JY, Wang AJ, Prins R, Duan XP, Chen YY (2016) Preparation of Ni2P/Al2O3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio. J Catal 334:116–119

    Article  CAS  Google Scholar 

  38. Yu ZQ (2019) Preparation of Ni3P-based catalysts and their catalytic performances in phenol hydrodeoxygenation, Ph.D. Thesis, Dalian University of Technology, China

  39. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  40. Zhou K, Liu HY, Shu HM, Xiao SW, Guo DC, Liu YX, Wei ZJ, Li XN (2019) A comprehensive study on the reductive amination of 5-hydroxymethylfurfural into 2,5-bisaminomethylfuran over Raney Ni through DFT calculations. ChemCatChem 11:2649–2656

    Article  CAS  Google Scholar 

  41. Sawhill S, Layman K, Vanwyk D, Engelhard M, Wang C, Bussell M (2005) Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support. J Catal 231:300–313

    Article  CAS  Google Scholar 

  42. Yu ZQ, Wang Y, Sun ZC, Li X, Wang AJ, Camaioni DM, Lercher JA (2018) Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chem 20:609–619

    Article  CAS  Google Scholar 

  43. Chen J, Shi H, Li L, Li K (2014) Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Appl Catal B 144:870–884

    Article  CAS  Google Scholar 

  44. Zhao S, Zhang Z, Zhu K, Chen J (2017) Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine. Appl Surf Sci 404:388–397

    Article  CAS  Google Scholar 

  45. Zhou K, Xie RH, Xiao MT, Guo DR, Cai ZD, Kang SM, Xu YJ, Wei JJ (2021) Direct amination of biomass-based furfuryl alcohol and 5-(aminomethyl)-2-furanmethanol with NH3 over hydrotalcite-derived nickel catalysts via the hydrogen-borrowing strategy. ChemCatChem 13:2074–2085

    Article  CAS  Google Scholar 

  46. Zaki MI, Hasan MA, Pasupulety L (2001) In situ FTIR spectroscopic study of 2-propanol adsorptive and catalytic interactions on metal-modified aluminas. Langmuir 17:4025–4034

    Article  CAS  Google Scholar 

  47. Chen H, He S, Xu M, Wei M, Evans DG, Duan X (2017) Promoted synergic catalysis between metal Ni and acid–base sites toward oxidant-free dehydrogenation of alcohols. ACS Catal 7:2735–2743

    Article  CAS  Google Scholar 

  48. An J, Wang Y, Lu J, Zhang J, Zhang Z, Xu S, Liu X, Zhang T, Gocyla M, Heggen M, Dunin-Borkowsk RE, Fornasiero P, Wang F (2018) Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: the catalysis of interfacial Lewis acid-base pair. J Am Chem Soc 140:4172–4181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22178195).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Tiefeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, Y., Lan, X. et al. Combining Ni3P and Lewis Acid–Base Pair as a High-Performance Catalyst for Amination of 1-Octanol. Catal Lett 153, 1215–1226 (2023). https://doi.org/10.1007/s10562-022-04035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04035-x

Keywords

Navigation