Skip to main content
Log in

Synthesis and Study of Catalytic Perspectives of DABCO Based Ionic Liquid for the Synthesis of 2,3-Dihydro-1,5-Benzothiazepines and 2-Phenylbenzothiazoles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a novel DABCO based dicationic acidic ionic liquid [C4H10-DABCO][HSO4]2 has been synthesized, characterized, and applied successfully as an eco-friendly and reusable catalyst in the synthesis of 2,3-dihydro-1,5-benzothiazepine and 2-phenylbenzothiazole derivatives. This work shows the impact of cations and anions on the catalytic applicability and moisture-resistance properties of DABCO based ionic liquids through the comparison of [H2-DABCO][HSO4]2, [H2-DABCO][H2PO4]2, [H2-DABCO][ClO4]2, and [C4H10-DABCO][HSO4]2. The proposed method displayed several advantages over prior methods, including use of non-metal and inexpensive catalyst, shorter reaction times, green solvent media, moderate to excellent product yields, easy work-up, and recyclability of the ionic liquid for subsequent reactions without a considerable reduction in activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Davis JH Jr, Gordon CM, Hilgers C, Wasserscheid P (2002). Ionic Liq Synth. https://doi.org/10.1039/C8NJ05611K

    Article  Google Scholar 

  2. Hallett JP, Welton T (2011) Chem Rev 111(5):3508–3576. https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  3. Zare A, Hasaninejad A, Beni AS, Moosavi-Zare AR, Merajoddin M, Kamali E, Akbari-Seddigh M, Parsaee Z (2011) Sci Iran 18(3):433–438. https://doi.org/10.1016/j.scient.2011.05.005

    Article  CAS  Google Scholar 

  4. Hardacre C, Holbrey JD, Nieuwenhuyzen M, Youngs TG (2007) Acc Chem Res 40(11):1146–1155. https://doi.org/10.1021/ar700068x

    Article  CAS  PubMed  Google Scholar 

  5. Zhao JQ, Zhou MQ, Zuo J, Xu XY, Zhang XM, Yuan WC (2015) Tetrahedron 71(10):1560–1565. https://doi.org/10.1016/j.tet.2015.01.031

    Article  CAS  Google Scholar 

  6. Ranu BC, Banerjee S (2005) J Org Chem 70(11):4517–4519. https://doi.org/10.1021/jo0500885

    Article  CAS  PubMed  Google Scholar 

  7. Pârvulescu VI, Hardacre C (2007) Chem Rev 107(6):2615–2665

    Article  PubMed  Google Scholar 

  8. Giernoth R (2010) Angew Chem Int Ed 49(16):2834–2839. https://doi.org/10.1002/anie.200905981

    Article  CAS  Google Scholar 

  9. Ranu BC, Banerjee S (2005) Org Lett 7(14):3049–3052. https://doi.org/10.1021/ol051004h

    Article  CAS  PubMed  Google Scholar 

  10. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A (2010) J Iran Chem Soc 7(3):646–651. https://doi.org/10.1007/BF03246053

    Article  CAS  Google Scholar 

  11. Khazaei A, Zolfigol MA, Moosavi-Zare AR, Zare A, Ghaemi E, Khakyzadeh V, Asgari Z, Hasaninejad A (2011) Sci Iran 18(6):1365–1371. https://doi.org/10.1016/j.scient.2011.09.016

    Article  CAS  Google Scholar 

  12. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124(21):5962–5963. https://doi.org/10.1021/ja026290w

    Article  CAS  PubMed  Google Scholar 

  13. Wasserscheid P, Sesing M, Korth W (2002) Green Chem 4(2):134–138. https://doi.org/10.1039/B109845B

    Article  CAS  Google Scholar 

  14. Atefeh ZB, Davoodnia A (2012) Bulle Korean Chem Soci 33(4):1154–1158. https://doi.org/10.5012/BKCS.2012.33.4.1154

    Article  Google Scholar 

  15. Maleki A, Sarvary A (2015) RSC Adv 5(75):60938–60955. https://doi.org/10.1039/C5RA11531K

    Article  CAS  Google Scholar 

  16. Guo L, Zhang D (2009) J Ame Chem Soc 131(50):18072–18074. https://doi.org/10.1021/ja907380d

    Article  CAS  Google Scholar 

  17. Garg N, Chandra T, Archana Jain AB, Kumar A (2010) Eur J Med Chem 45:1529–1535. https://doi.org/10.1016/j.ejmech.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI, Swain NA (2013) J Med Chem 56(3):593–624. https://doi.org/10.1021/jm3011433

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Zhang P, Zhang X, Zhang Y, Li Y, Wang Y (2009) Euro J Med Chem 44(7):2815–2821. https://doi.org/10.1016/j.ejmech.2008.12.021

    Article  CAS  Google Scholar 

  20. Mor S, Nagoria S, Sindhu S, Khatri M, Sidhu G, Singh V (2017) J Heterocycl Chem 54(6):3282–3293. https://doi.org/10.1002/jhet.2948

    Article  CAS  Google Scholar 

  21. Ameta KL, Rathore NS, Kumar B (2012) J Serb Chem Soc 77(6):725–731. https://doi.org/10.2298/JSC110715219A

    Article  CAS  Google Scholar 

  22. Dandia A, Sati M, Arya K, Sharma R, Loupy A (2003) Chem Pharm Bull 51(10):1137–1141. https://doi.org/10.1248/cpb.51.1137

    Article  CAS  Google Scholar 

  23. Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK (2008) Euro J Med Chem 43(11):2279–2290. https://doi.org/10.1016/j.ejmech.2008.05.035

    Article  CAS  Google Scholar 

  24. Hopenwasser J, Mozayani A, Danielson TJ, Harbin J, Narula HS, Posey DH, Shrode PW, Wilson SK, Li R, Sanchez LA (2004) J Anal Toxicol 28(4):264–268. https://doi.org/10.1093/jat/28.4.264

    Article  CAS  PubMed  Google Scholar 

  25. Liegeois JF, Bruhwyler J, Rogister F, Delarge J (1995) Curr Med Chem 1(6):471–501

    Article  CAS  Google Scholar 

  26. Hagiwara M, Adachi-Akahane S, Nagao T (2003) Euro J Pharma 466(1–2):63–71. https://doi.org/10.1016/S0014-2999(03)01547-4

    Article  CAS  Google Scholar 

  27. Li T, Zhang J, Pan J, Wu Z, Hu D, Song B (2017) Euro J Med Chem 125:657–662. https://doi.org/10.1016/j.ejmech.2016.09.069

    Article  CAS  Google Scholar 

  28. Singh M, Singh SK, Gangwar M, Nath G, Singh SK (2014) RSC Adv 4(36):19013–19023. https://doi.org/10.1039/C4RA02649G

    Article  CAS  Google Scholar 

  29. Su X, Vicker N, Ganeshapillai D, Smith A, Purohit A, Reed MJ, Potter BV (2006) Mol Cell Endocrinol 248(1–2):214–217. https://doi.org/10.1016/j.mce.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  30. Kok SHL, Gambari R, Chui CH, Yuen MCW, Lin E, Wong RSM, Lau FY, Cheng GYM, Lam WS, Chan SH, Lam KHASC (2008) Bioorg Med Chem 16(7):3626–3631. https://doi.org/10.1016/j.bmc.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  31. Ćaleta I, Grdiša M, Mrvoš-Sermek D, Cetina M, Tralić-Kulenović V, Pavelić K, Karminski-Zamola G (2004) II Farmaco 59(4):297–305. https://doi.org/10.1016/j.farmac.2004.01.008

    Article  CAS  Google Scholar 

  32. Bradshaw TD, Westwell AD (2004) Curr Med Chem 11(8):1009–1021. https://doi.org/10.2174/0929867043455530

    Article  CAS  PubMed  Google Scholar 

  33. Cressier D, Prouillac C, Hernandez P, Amourette C, Diserbo M, Lion C, Rima G (2009) Bioorg Med Chem 17(14):5275–5284. https://doi.org/10.1016/j.bmc.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  34. Nagarajan SR, De Crescenzo GA, Getman DP, Lu HF, Sikorski JA, Walker JL, McDonald JJ, Houseman KA, Kocan GP, Kishore N, Mehta PP (2003) Bioorg Med Chem 11(22):4769–4777. https://doi.org/10.1016/j.bmc.2003.07.001

    Article  CAS  PubMed  Google Scholar 

  35. Dogruer DS, Ünlü S, Şahin MF, Yqilada E (1998) II Farmaco 53(1):80–84. https://doi.org/10.1016/S0014-827X(97)00017-7

    Article  CAS  Google Scholar 

  36. Luo B, Li D, Zhang AL, Gao JM (2018) Molecules 23(10):2457. https://doi.org/10.3390/molecules23102457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma G, Kumar R, Chakraborti AK (2008) Tetrahedron Lett 49(27):4269–4271. https://doi.org/10.1016/j.tetlet.2008.04.146

    Article  CAS  Google Scholar 

  38. Yan Y, Yang X, Wu L (2012) Phosphorus Sulfur Silicon Relat Elem 187:573–579. https://doi.org/10.1080/10426507.2011.627900

    Article  CAS  Google Scholar 

  39. Hekmatshoar R, Sadjadi S, Shiri S, Heravi MM, Beheshtiha YS (2009) Synth Commun 39(14):2549–2559. https://doi.org/10.1080/00397910802657925

    Article  CAS  Google Scholar 

  40. Sun P, Fang L, Wu L (2011) J Sulfur Chem 32(3):257–261. https://doi.org/10.1080/17415993.2011.572971

    Article  CAS  Google Scholar 

  41. Sharma G, Kumar R, Chakraborti AK (2008) Tetrahedron Lett 49:4272–4275. https://doi.org/10.1016/j.tetlet.2008.04.144

    Article  CAS  Google Scholar 

  42. Khatik GL, Sharma G, Kumar R, Chakraborti AK (2007) Tetrahedron 63(5):1200–1210. https://doi.org/10.1016/j.tet.2006.11.050

    Article  CAS  Google Scholar 

  43. Yadav T, Kumar M, Jain R, Yadav AK (2012) Indian J Chem Sect B 51:1447–1451

    Google Scholar 

  44. Kumar A, Ahmad I, Rao SM (2009) J Sulfur Chem 30:570–577. https://doi.org/10.1080/17415993.2011.572971

    Article  CAS  Google Scholar 

  45. Sharifi A, Hosseini F, Ghonouei N, Abaee MS, Mirzaei M, Mesbah AW, Harms K (2015) J Sulfur Chem 36(3):257–269. https://doi.org/10.1080/17415993.2015.1014483

    Article  CAS  Google Scholar 

  46. Khatik GL, Kumar R, Chakraborti AK (2007) Synthesis 4:541–546. https://doi.org/10.1055/s-2007-965892

    Article  CAS  Google Scholar 

  47. Ankodia V, Sharma PK, Gupta V, Kumar M (2008) Heterocycl Commun 14(3):155–160. https://doi.org/10.1515/HC.2008.14.3.155

    Article  CAS  Google Scholar 

  48. Chate AV, Joshi RS, Mandhane PG, Gill CH (2011) J Korean Chem Soc 55(5):776–780. https://doi.org/10.5012/jkcs.2011.55.5.776

    Article  CAS  Google Scholar 

  49. Yadav N, Yadav VB, Ansari MD, Sagir H, Verma A, Siddiqui IR (2019) New J Chem 43(18):7011–7014. https://doi.org/10.1039/C8NJ05611K

    Article  CAS  Google Scholar 

  50. Shaik AB, Bhandare RR, Nissankararao S, Lokesh BVS, Shahanaaz S, Rahman MM (2021) Arab J Chem 14(2):102915. https://doi.org/10.1016/j.arabjc.2020.102915

    Article  CAS  Google Scholar 

  51. Yin C, Yang T, Pan Y, Wen J, Zhang X (2020) Org Lett 22(3):920–923. https://doi.org/10.1021/acs.orglett.9b04478

    Article  CAS  PubMed  Google Scholar 

  52. Gao X, Yu B, Yang Z, Zhao Y, Zhang H, Hao L, Han B, Liu Z (2015) ACS Catal 5(11):6648–6652. https://doi.org/10.1021/acscatal.5b01874

    Article  CAS  Google Scholar 

  53. Kumar KR, Satyanarayana PVV, Srinivasa RB (2013). J Chem. https://doi.org/10.1155/2013/151273

    Article  Google Scholar 

  54. Nadaf RN, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2004) J Mol Catal A 214(1):155–160. https://doi.org/10.1016/j.molcata.2003.10.064

    Article  CAS  Google Scholar 

  55. Maphupha M, Juma WP, de Koning CB, Brady D (2018) RSC Adv 8(69):39496–39510. https://doi.org/10.1039/C8RA07377E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo HY, Li JC, Le Shang Y (2009) Chin Chem Lett 20(12):1408–1410. https://doi.org/10.1016/j.cclet.2009.06.037

    Article  CAS  Google Scholar 

  57. Dar AA, Shadab M, Khan S, Ali N, Khan AT (2016) J Org chem 81(8):3149–3160. https://doi.org/10.1021/acs.joc.6b00113

    Article  CAS  PubMed  Google Scholar 

  58. Ye LM, Chen J, Mao P, Mao ZF, Zhang XJ, Yan M (2017) Tetrahedron Lett 58(9):874–876. https://doi.org/10.1016/j.tetlet.2017.01.053

    Article  CAS  Google Scholar 

  59. Shirini F, Langarudi MSN, Daneshvar N, Jamasbi N, Irankhah-Khanghah M (2018) J Mol Struct 1161:366–382. https://doi.org/10.1016/j.molstruc.2018.02.069

    Article  CAS  Google Scholar 

  60. Jamasbi N, Irankhah-Khanghah M, Shirini F, Tajik H, Langarudi MSN (2018) New J Chem 42(11):9016–9027. https://doi.org/10.1039/C8NJ01455H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is pleased to acknowledge the Department of Science & Technology (DST) New Delhi for the award of Junior Research Fellowship (JRF) and Senior Research fellowship (SRF) [Grant No: DST/INSPIRE Fellowship/IF160600] for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Makone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1389 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinate, P., Makone, S. Synthesis and Study of Catalytic Perspectives of DABCO Based Ionic Liquid for the Synthesis of 2,3-Dihydro-1,5-Benzothiazepines and 2-Phenylbenzothiazoles. Catal Lett 153, 995–1012 (2023). https://doi.org/10.1007/s10562-022-04033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04033-z

Keywords

Navigation