Skip to main content
Log in

Two-Step Fabrication of Carbon-Supported Cu@Pd Nanoparticles for Electro-Oxidation of Formic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Core–shell structure Cu@Pd/C catalysts were prepared in two steps combining microwave-assisted glycol reduction and chemical impregnation method for the first time. Compared with the traditional one-step synthesis of PdCu/C alloy catalysts by microwave (marked as M-PdCu/C) and impregnation (denoted by I-PdCu/C) method, respectively. The Cu@Pd/C catalysts were prepared in two-step show better catalytic performance toward formic acid oxidation, due to its special core–shell structure and better dispersion. On this basis, different proportions of Cux@Pdy/C (x:y = 1:1, 1:2, 1:3, 1:4 and 1:5) catalysts were synthesized by the two-step strategy. The relationship between lattice strain, electron distribution and catalytic performance were explored by physical and chemical characterization. X-ray diffraction and X-ray photoelectron spectra analyses showed that the introduction of Cu lead to the lattice contraction and modified electronic structure of Pd. The electrochemical test showed that Cu@Pd3/C sample has the highest activity toward formic acid electro-oxidation. Its mass activity is about 3.3 times that of Pd/C catalyst that was synthesized by impregnation method (labelled as I-Pd/C). At the same time, the Cu@Pd3/C catalyst also demonstrated improved stability.

Graphical Abstract

The low-palladium catalyst with a Pd–Cu shell–core structure was synthesized by two-step method and has excellent catalytic activity and stability for formic acid electro-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jiang K, Cai WB (2014) Appl Catal B 147:185–192

    Article  CAS  Google Scholar 

  2. Yan H, Jiao Y, Wu A, Tian C, Wang L, Zhang X, Fu H (2018) J Mater Chem A 6:7623–7630

    Article  CAS  Google Scholar 

  3. Zhang N, Feng Y, Zhu X, Guo S, Guo J, Huang X (2017) Adv Mater 29:1603774

    Article  Google Scholar 

  4. Fang ZY, Chen W (2021) Nanoscale Adv 3:94–105

    Article  CAS  PubMed  Google Scholar 

  5. Curtin D, Lousenberg R, Henry T, Tangeman P, Tisack M (2004) J Power Sources 131:41–48

    Article  CAS  Google Scholar 

  6. Zhang L, Choi S, Tao J, Peng H-C, Xie S, Zhu Y, Xie Z, Xia Y (2014) Adv Funct Mater 24:7520–7529

    Article  CAS  Google Scholar 

  7. Gao W, Keith J, Anton J, Jacob T (2010) J Am Chem Soc 132:18377–18385

    Article  PubMed  Google Scholar 

  8. Gong Q, Gong SP, Zheng JW, Cheng X, Yang WF, Zhang TF, Huang LY (2018) ECS Trans 85:845–854

    Article  CAS  Google Scholar 

  9. Uhm S, Lee HJ, Kwon Y, Lee J (2008) Angew Chem Int Ed 47:10317–10320

    Article  Google Scholar 

  10. Babu PK, Kim HS, Chung JH, Oldfield E, Wieckowski A (2004) J Phys Chem B 108:20228–20232

    Article  CAS  Google Scholar 

  11. Zhu Y, Khan Z, Masel RI (2005) J Power Sources 139:15–20

    Article  CAS  Google Scholar 

  12. Alexeyeva N, Sarapuu A, Tammeveski K, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM (2011) Electrochim Acta 56:6702–6708

    Article  CAS  Google Scholar 

  13. Wei Y-C, Liu C-W, Chang Y-W, Lai C-M, Lim P-Y, Tsai L-D, Wang K-W (2010) Int J Hydrog Energy 35:1864–1871

    Article  CAS  Google Scholar 

  14. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) J Power Sources 167:243–249

    Article  CAS  Google Scholar 

  15. Chen LY, Guo H, Fujita T, Hirata A, Zhang W, Inoue A, Chen MW (2011) Adv Funct Mater 21:4364–4370

    Article  CAS  Google Scholar 

  16. Zhao J, Sarkar A, Manthiram A (2010) Electrochim Acta 55:1756–1765

    Article  CAS  Google Scholar 

  17. Xu H, Zhang K, Yan B, Wang J, Wang C, Li S, Gu Z, Du Y, Yang P (2017) J Power Sources 365:27–35

    Article  Google Scholar 

  18. Bauskar AS, Rice CA (2013) Electrochim Acta 107:562–568

    Article  CAS  Google Scholar 

  19. Bampos G, Bebelis S, Kondarides DI, Verykios X (2017) Top Catal 60:1260–1273

    Article  CAS  Google Scholar 

  20. Lu YH, Chen W (2012) ACS Catal 2:84–90

    Article  CAS  Google Scholar 

  21. Chen W, Chen SW (2011) J Mater Chem 21:9169–9178

    Article  CAS  Google Scholar 

  22. Lu YZ, Chen W (2011) Chem Commun 47:2541–2543

    Article  CAS  Google Scholar 

  23. Yang B, Zhang WQ, Hu SL, Liu CZ, Wang XQ, Fan YJ, Jiang Z, Yang J, Chen W (2021) J Colloid Interface Sci 600:503–512

    Article  CAS  PubMed  Google Scholar 

  24. Gong Q, Gong S, Zhang T, Cheng X, Li H (2019) J Electrochem Soc 166:F906–F913

    Article  CAS  Google Scholar 

  25. Xue J, Han G, Ye W, Sang Y, Li H, Guo P, Zhao XS (2016) ACS Appl Mater Interfaces 8:34497–34505

    Article  CAS  PubMed  Google Scholar 

  26. Hu S, Scudiero L, Ha S (2012) Electrochim Acta 83:354–358

    Article  CAS  Google Scholar 

  27. Zhang R, Yang M, Peng M, Ling L, Wang B (2019) Appl Surf Sci 465:730–739

    Article  CAS  Google Scholar 

  28. Zhang L, Gong Y, Wu D, Wu G, Xu B, Bi L, Yuan W, Cui Z (2019) J Colloid Interface Sci 537:366–374

    Article  CAS  PubMed  Google Scholar 

  29. Xu C, Liu Y, Wang J, Genga H, Qiu H (2012) J Power Sources 199:124–131

    Article  CAS  Google Scholar 

  30. Chen D, Xu L, Liu H, Yang J (2019) Green Energy Environ 4:254–263

    Article  Google Scholar 

  31. Hu S, Che F, Khorasani B, Jeon M, Yoon CW, McEwen J-S, Scudiero L, Ha S (2019) Appl Catal B 254:685–692

    Article  CAS  Google Scholar 

  32. Hsu C, Huang C, Hao Y, Liu F (2012) Electrochem Commun 23:133–136

    Article  CAS  Google Scholar 

  33. Yu W-Y, Mullen GM, Flaherty DW, Mullins CB (2014) J Am Chem Soc 136:11070–11078

    Article  CAS  PubMed  Google Scholar 

  34. Yuan D, Liu Z (2013) J Power Sources 224:241–249

    Article  CAS  Google Scholar 

  35. Jiang Y, Lu Y, Han D, Zhang Q, Niu L (2012) Nanotechnology 23:105609

    Article  PubMed  Google Scholar 

  36. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Nat Nanotechnol 6:302–307

    Article  CAS  PubMed  Google Scholar 

  37. Cho J, Lee S, Han J, Yoon SP, Nam SW, Choi SH, Lee K-Y, Ham HC (2014) J Phys Chem C 118:22553–22560

    Article  CAS  Google Scholar 

  38. He F, Li K, Xie G, Wang Y, Jiao M, Tang H, Wu Z (2016) J Power Sources 316:8–16

    Article  CAS  Google Scholar 

  39. Wang R, Jiang LY, Feng JJ, Liu WD, Yuan JH, Wang AJ (2017) Int J Hydrog Energy 42:6695–6704

    Article  CAS  Google Scholar 

  40. Mei LP, Feng JJ, Wu L, Zhou JY, Chen JR, Wang AJ (2015) Biosens Bioelectron 74:347–352

    Article  CAS  PubMed  Google Scholar 

  41. Zhang QL, Zheng JN, Xu TQ, Wang AJ, Wei J, Chen JR, Feng JJ (2014) Electrochim Acta 132:551–560

    Article  CAS  Google Scholar 

  42. Wang H, Chen H, Wang H-Q, Ou C-R, Li R, Liu H-B (2020) Int J Hydrog Energy 45:10735–10744

    Article  CAS  Google Scholar 

  43. Cai J, Zeng Y, Guo Y (2014) J Power Sources 270:257–261

    Article  CAS  Google Scholar 

  44. Ledesma-García J, Maya-Cornejo JA, Arjona N, Rivas S, Á lvarez-Contreras L, Guerra-Balcázar M, Arriaga LG (2015) J Electrochem Soc 162:F1439–F1444

    Article  Google Scholar 

  45. Ren M, Zhou Y, Tao F, Zou Z, Akins DL, Yang H (2014) J Phys Chem C 118:12669–12675

    Article  CAS  Google Scholar 

  46. Maya-Cornejo J, Guerra-Balcázar M, Arjona N, Álvarez-Contreras L, Rodríguez Valadez FJ, Gurrola MP, Ledesma-García J, Arriaga LG (2016) Fuel 183:195–205

    Article  CAS  Google Scholar 

  47. Liu J, Cao J, Huang Q, Li X, Zou Z, Yang H (2008) J Power Sources 175:159–165

    Article  CAS  Google Scholar 

  48. Holzwarth U, Gibson N (2011) Nat Nanotechnol 6:534

    Article  CAS  PubMed  Google Scholar 

  49. Chen D, Zhang R-H, Hu Q-Y, Guo Y-F, Chen S-N, Zhou X-W, Dai Z-H (2019) J Electroanal Chem 834:241–248

    Article  CAS  Google Scholar 

  50. Oliver-Meseguer J, Dominguez I, Gavara R, Leyva-Pérez A, Corma A (2017) ChemCatChem 9:1–8

    Article  Google Scholar 

  51. Ferreira M, Pinto MF, Soares OSGP, Pereira MFR, Órfão JJM, Figueiredo JL, Neves IC, Fonseca AM, Parpot P (2012) Electrochim Acta 60:278–286

    Article  CAS  Google Scholar 

  52. Zhao X, Zhu J, Liang L, Liu C, Liao J, Xing W (2012) J Power Sources 210:392–396

    Article  CAS  Google Scholar 

  53. Zhu Z, Lu C, Wang J, Zhang X, Cai N, Xue Y, Chen W, Yan Z, Yang X, Yu F, Yang W, Tian Q (2019) Int J Electrochem Sci 14:11019–11034

    Article  CAS  Google Scholar 

  54. Li R, Yuan H, Ma Z, Tang B, Li J, Wang X (2019) Electrochim Acta 293:149–159

    Article  CAS  Google Scholar 

  55. Chen Y, Niu H-J, Feng Y-G, Wu J-H, Wang A-J, Huang H, Feng J-J (2020) Appl Surf Sci 510:145480

    Article  CAS  Google Scholar 

  56. Yang F, Zhang Y, Liu P-F, Cui Y, Ge X-R, Jing Q-S (2016) Int J Hydrog Energy 41:6773–6780

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Province (Grant No. 2016CFA079) and the financial supports from the Opening Research Fund of Hubei Key Laboratory for Processing and Application of Catalytic Materials (Grant No. 202201403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yichang Chen, Zhengfang Tian or Qifeng Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Liu, X., Yang, X. et al. Two-Step Fabrication of Carbon-Supported Cu@Pd Nanoparticles for Electro-Oxidation of Formic Acid. Catal Lett 153, 1068–1082 (2023). https://doi.org/10.1007/s10562-022-04020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04020-4

Keywords

Navigation