Skip to main content
Log in

Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Propane dehydrogenation to propylene, one of the most significant compounds in the chemical industry, has attracted tremendous attention worldwide. A series of V doped graphitic carbon nitride composites (V-g-C3N4) were synthesized via a combination of thermal polymerization of urea and thermal decomposition of NH4VO3. After doping VOx species, the V doped g-C3N4 catalysts achieved an optimal propylene yield of 16.16% with a propylene selectivity of 68.6% at 600 °C, compared with undoped g-C3N4 (a propylene yield of 5.42% with a propylene selectivity of 53.9%) at the same condition. Subsequently, various characterization techniques, including XRD, TEM, FTIR, Raman, XPS, N2 adsorption–desorption, etc., were unitized to investigate the chemical properties and crystalline structures of the prepared catalysts. The essence of catalytic enhancement, such as crystallinity, the main active VOx species, and the newly emerging V–N bonds in V-g-C3N4 catalysts, has been discussed, providing a tentative reaction pathway for CH3(*CH)CH3 and CH3CHCH2* species on V active sites. In general, this work offers a research basis for the bran-new materials design for propane dehydrogenation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou H, Yi X, Hui Y, Wang L, Chen W, Qin Y, Wang M, Ma J, Chu X, Wang Y, Hong X, Chen Z, Meng X, Wang H, Zhu Q, Song L, Zheng A, Xiao F-S (2021) Isolated boron in zeolite for oxidative dehydrogenation of propane. Science 372:76–80

    Article  CAS  PubMed  Google Scholar 

  2. Hannagan RT, Giannakakis G, Réocreux R, Schumann J, Finzel J, Wang Y, Michaelides A, Deshlahra P, Christopher P, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH (2021) First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 372:1444–1447

    Article  CAS  Google Scholar 

  3. Rostom S, de Lasa H (2020) Propane oxidative dehydrogenation on vanadium-based catalysts under oxygen-free atmospheres. Catalysts 10:418

    Article  CAS  Google Scholar 

  4. Christopher CCE, Dutta A, Farooq S, Karimi IA (2017) process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recuperation. Ind Eng Chem Res 56:14557–14564

    Article  CAS  Google Scholar 

  5. Liu J, Luo W, Yin Y, Fu X-Z, Luo J-L (2021) Understanding the origin for propane non-oxidative dehydrogenation catalysed by d2–d8 transition metals. J Catal 396:333–341

    Article  CAS  Google Scholar 

  6. Ruelas-Leyva JP, Maldonado-Garcia LF, Talavera-Lopez A, Santos-López IA, Picos-Corrales LA, Santolalla-Vargas CE, Torres SAG, Fuentes GA (2021) A comprehensive study of coke deposits on a Pt-Sn/SBA-16 catalyst during the dehydrogenation of propane. Catalysts 11:128

    Article  CAS  Google Scholar 

  7. Li C, Wang G (2021) Dehydrogenation of light alkanes to mono-olefins. Chem Soc Rev 50:4359–4381

    Article  CAS  PubMed  Google Scholar 

  8. Qi L, Babucci M, Zhang Y, Lund A, Liu L, Li J, Chen Y, Hoffman AS, Bare SR, Han Y, Gates BC, Bell AT (2021) Propane dehydrogenation catalyzed by isolated Pt atoms in≡SiOZn–OH nests in dealuminated zeolite beta. J Am Chem Soc 143:21364–21378

    Article  CAS  PubMed  Google Scholar 

  9. Sun X, Xue J, Ren Y, Li X, Zhou L, Li B, Zhao Z (2021) Revealing nature of active site and reaction mechanism of supported chromium oxide catalyst in propane direct dehydrogenation. Mol Catal 505:111520

    Article  CAS  Google Scholar 

  10. Buchwalter P, Rosé J, Braunstein P (2015) Multimetallic catalysis based on heterometallic complexes and clusters. Chem Rev 115:28–126

    Article  CAS  PubMed  Google Scholar 

  11. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  12. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y (2018) General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 1:63–72

    Article  CAS  Google Scholar 

  13. Zhang Y, Zhao J, Wang H, Xiao B, Zhang W, Zhao X, Lv T, Thangamuthu M, Zhang J, Guo Y, Ma J, Lin L, Tang J, Huang R, Liu Q (2022) Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat Commun 13:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Z, Wang X, Zhu M, Leng X, Chen W, Wang W, Xu Q, Yang L-M, Wu Y (2021) Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res 14:4512–4519

    Article  CAS  Google Scholar 

  15. He Y, Liu S, Priest C, Shi Q, Wu G (2020) Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 49:3484–3524

    Article  CAS  PubMed  Google Scholar 

  16. Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 55:10800–10805

    Article  CAS  Google Scholar 

  17. Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X (2018) Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4:285–297

    Article  CAS  Google Scholar 

  18. Fu J, Yu J, Jiang C, Cheng B (2018) g-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8:1701503

    Article  Google Scholar 

  19. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  PubMed  Google Scholar 

  20. Gong Y, Li M, Li H, Wang Y (2015) Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem 17:715–736

    Article  CAS  Google Scholar 

  21. Cao L, Dai P, Zhu L, Yan L, Chen R, Liu D, Gu X, Li L, Xue Q, Zhao X (2020) Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane. Appl Catal B Environ 262:118277

    Article  Google Scholar 

  22. Zhao X, Wang L, Pei Y (2021) Single metal atom catalyst supported on g-C3N4 for formic acid dehydrogenation: a combining density functional theory and machine learning study. J Phys Chem C 125:22513–22521

    Article  CAS  Google Scholar 

  23. An S, Zhang G, Wang T, Zhang W, Li K, Song C, Miller JT, Miao S, Wang J, Guo X (2018) High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12:9441–9450

    Article  CAS  PubMed  Google Scholar 

  24. Kong N, Fan X, Liu F, Wang L, Lin H, Li Y, Lee S-T (2020) Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 14:5772–5779

    Article  CAS  PubMed  Google Scholar 

  25. Liu D, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew Chem Int Ed 59:4519–4524

    Article  CAS  Google Scholar 

  26. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  27. Pan G, Sun Z (2021) Cu-doped g-C3N4 catalyst with stable Cu0 and Cu+ for enhanced amoxicillin degradation by heterogeneous electro-fenton process at neutral pH. Chemosphere 283:131257

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang J, Li M, Pu Y, Ragauskas AJ, Yoo CG (2020) Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl Sci 10(12):4345. https://doi.org/10.3390/app10124345

    Article  CAS  Google Scholar 

  29. Cao T, Cai M, Jin L, Wang X, Yu J, Chen Y, Dai L (2019) Amorphous Cr-doped g-C3N4 as an efficient catalyst for the direct hydroxylation of benzene to phenol. New J Chem 43:16169–16175

    Article  CAS  Google Scholar 

  30. Tonda S, Kumar S, Kandula S, Shanker V (2014) Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A 2:6772–6780

    Article  CAS  Google Scholar 

  31. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221

    Article  CAS  Google Scholar 

  32. Jorge AB, Martin DJ, Dhanoa MTS, Rahman AS, Makwana N, Tang J, Sella A, Corà F, Firth S, Darr JA, McMillan PF (2013) H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J Phys Chem C 117:7178–7185

    Article  CAS  Google Scholar 

  33. Zhao X, Han Q, Li J, Du X, Liu G, Wang Y, Wu L, Chen Z (2022) Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem Eng J 433:133509

    Article  CAS  Google Scholar 

  34. Reddy IN, Reddy LV, Jayashree N, Reddy CV, Cho M, Kim D, Shim J (2021) Vanadium-doped graphitic carbon nitride for multifunctional applications: photoelectrochemical water splitting and antibacterial activities. Chemosphere 264:128593

    Article  CAS  PubMed  Google Scholar 

  35. Yan M, Hua Y, Zhu F, Sun L, Gu W, Shi W (2017) Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Appl Catal B Environ 206:531–537

    Article  CAS  Google Scholar 

  36. Su H, Zhou J, Miao L, Shi J, Gu Y, Wang P, Tian Y, Mu X, Wei A, Huang L, Chen S, Deng Z (2019) A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation. Sustain Mater Technol 20:e00095

    CAS  Google Scholar 

  37. Liu H, Zhang Y, Dong J, Ye T, Hao J, Yang Y, Jiang X, Kang X, Bando Y, Wang X (2018) Curving effects of concave dodecahedral nanocarbons enable enhanced Li-ion storage. J Mater Chem A 6:14894–14902

    Article  CAS  Google Scholar 

  38. Li J, Ghoshal S, Liang W, Sougrati M-T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma Z-F, Mukerjee S, Jia Q (2016) Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ Sci 9:2418–2432

    Article  CAS  Google Scholar 

  39. Yan S, Cai Z, Wu D, Yu Y, Huang S, Cao Y (2021) Z-scheme interface modification by MnV2O6 for V2O5/g-C3N4 heterostructure towards efficient visible photocatalytic activity. J Alloys Compd 882:160751

    Article  CAS  Google Scholar 

  40. Zhang W, Xu D, Wang F, Chen M (2021) Element-doped graphitic carbon nitride: confirmation of doped elements and applications. Nanoscale Adv 3:4370–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang T, Guo X, Song C, Liu Y, Zhao Z (2021) Fabrication of Isolated VOx sites on alumina for highly active and stable non-oxidative dehydrogenation. J Phys Chem C 125:19229–19237

    Article  CAS  Google Scholar 

  42. Chen Y, Liu X, Hou L, Guo X, Fu R, Sun J (2020) Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem Eng J 383:123132

    Article  CAS  Google Scholar 

  43. Fu J, Zhu B, Jiang C, Cheng B, You W, Yu J (2017) Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13:1603938

    Article  Google Scholar 

  44. Liu Q, Fan C, Tang H, Sun X, Yang J, Cheng X (2015) One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl Surf Sci 358:188–195

    Article  CAS  Google Scholar 

  45. Jeon N, Seo O, Oh J, Park J, Chung I, Kim J, Sakata O, Tayal A, Yun Y (2021) Non-oxidative propane dehydrogenation over alumina-supported Co–V oxide catalysts. Appl Catal A 614:118036

    Article  CAS  Google Scholar 

  46. Chen S, Zeng L, Mu R, Xiong C, Zhao Z-J, Zhao C, Pei C, Peng L, Luo J, Fan L-S, Gong J (2019) Modulating lattice oxygen in dual-functional Mo–V–O mixed oxides for chemical looping oxidative dehydrogenation. J Am Chem Soc 141:18653–18657

    Article  CAS  PubMed  Google Scholar 

  47. Chen S, Pei C, Sun G, Zhao Z-J, Gong J (2020) Nanostructured catalysts toward efficient propane dehydrogenation. Acc Mater Res 1:30–40

    Article  CAS  Google Scholar 

  48. Xiong C, Chen S, Yang P, Zha S, Zhao Z-J, Gong J (2019) Structure-performance relationships for propane dehydrogenation over aluminum supported vanadium oxide. ACS Catal 9:5816–5827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by “the Fundamental Research Funds for the Central Universities” (Grant Nos. 2020YJS182 and 2019RC021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yijun Yang or Xi Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chai, S., Li, P. et al. Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts. Catal Lett 153, 1120–1129 (2023). https://doi.org/10.1007/s10562-022-04018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04018-y

Keywords

Navigation