Skip to main content

Advertisement

Log in

The Strong Interaction Between CuOx and CeO2 Nanorods Enhanced Methanol Synthesis Activity for CO2 Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Cu/CeO2-nanopolyhedrals and pure Cu/CeO2-nanorods with different sizes were synthesized for CO2 hydrogenation to methanol. With increasing the percentage composition of CeO2 nanorods, the surface concentrations of Cu+, Ce3+ and oxygen vacancies were gradually enhanced. However, the amount of surface Cu+ species and oxygen vacancies would be decreased instead if the size of pure CeO2 nanorods was too large. The variation tendency of catalytic performance for CO2 hydrogenation to methanol was well consistent with that of Cu+ species and oxygen vacancies. Cu/CeO2 nanorods with small size exhibited the strongest interaction in Cu-CeO2 interface and the highest methanol production activity among all Cu/CeO2 nano-catalysts. The small size of CeO2-nanorods obtained at NaOH concentration of 10 mol/L, hydrothermal temperature of 80 °C and hydrothermal time of 24 h showed the best catalytic performance (XCO2 = 5.8%, SCH3OH = 92.0%, YCH3OH = 5.3%) at 280 °C and 3 MPa. The stronger interaction accelerated the charge transfer between CuOx species and CeO2 nanorods, which produced the larger amount of surface Cu+ species and oxygen vacancies. The synergistic effect between reduced Cu species and oxygen vacancies improved methanol selectivity and was responsible for CO2 hydrogenation to methanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li S-Z, Wang Y, Yang B, Guo L-M (2019) A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol. Appl Catal A 571:51–60

    Article  CAS  Google Scholar 

  2. Dang S-S, Yang H-Y, Gao P, Wang H, Li X-P, Wei W, Sun Y-H (2019) A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal Today 330:61–75

    Article  CAS  Google Scholar 

  3. Zhou W, Cheng K, Kang J-C, Zhou C, Subramanian V, Zhang Q-H, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–9228

    Article  CAS  Google Scholar 

  4. Zhong J-W, Yang X-F, Wu Z-L, Liang B-L, Huang Y-Q, Zhang T (2020) State of the art and perspective in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49:1385–1413

    Article  CAS  Google Scholar 

  5. Malik A-S, Zaman S-F, Al-Zahrani A-A, Daous M-A, Driss H, Petrov L-A (2018) Development of highly selective PdZn/CeO2 and Ga-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation. Appl Catal A 560:42–53

    Article  CAS  Google Scholar 

  6. Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M (2004) Catalytic activity of the M/(3ZnO·ZrO2) system (M=Cu, Ag, Au) in the hydrogenation of CO2 to methanol. Appl Catal A 278:11–23

    Article  CAS  Google Scholar 

  7. Martin O, Martin D-A-J, Mondelli D-C, Mitchell D-S (2016) Indium oxides as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Edit 55:6261–6265

    Article  CAS  Google Scholar 

  8. Beckers J, Rothenberg G (2010) Sustainable selective oxidation using ceria-based materials. Green Chem 12:939

    Article  CAS  Google Scholar 

  9. Acerbi N, Tsang S-C-E, Jones G, Golunski S, Collier P (2013) Rationalization of interactions in precious metal/ceria catalysts using the d-band center model. Angew Chem Int Ed Engl 52:7737–7741

    Article  CAS  Google Scholar 

  10. Ganduglia-Pirovano M-V (2015) The non-innocent role of cerium oxide in heterogeneous catalysis: a theoretical perspective. Catal Today 2:1–13

    Google Scholar 

  11. Nix R-M, Rayment T, Lambert R-M, Robert Jennings J, Owen J (1987) An in suit X-ray diffraction study of the activation and performance of methanol synthesis catalysts derived from rare earth-copper alloys. J Catal 106:216–234

    Article  CAS  Google Scholar 

  12. Sripada P, Kimpton J, Barlow A, Williams T, Kandasamy S, Bhattacharya S (2020) Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J Catal 381:415–426

    Article  CAS  Google Scholar 

  13. Graciani J, Mudiyanselage K, Xu F, Baber A-E, Evans J, Senanayake S-D, Stacchiola D-J, Liu P, Hrbek J, Sanz J-F, Rodriguez J-A (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550

    Article  CAS  Google Scholar 

  14. Wang W-W, Qu Z-P, Song L-X, Fu Q (2020) CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Turning methanol selectivity via metal-support interaction. J Energy Chem 40:22–30

    Article  CAS  Google Scholar 

  15. Varvoutis G, Lykaki M, Papis E (2021) Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. J CO2 Util 44:101408–101416

    Article  CAS  Google Scholar 

  16. Moretti E, Lenarda M, Storaro L, Talon A (2007) Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. Appl Catal B: Environ 72:149–156

    Article  CAS  Google Scholar 

  17. Ouyang B, Tan W-L, Liu B (2017) Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal Commun 95:36–39

    Article  CAS  Google Scholar 

  18. Jiang F, Wang S-S, Liu B, Liu J, Wang L, Xiao Y, Xu Y-B, Liu X-H (2020) Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal 10:11493–11509

    Article  CAS  Google Scholar 

  19. Tan Q-Q, Shi Z-S, Wu D-F (2019) CO2 hydrogenation over differently morphological CeO2-supported Cu-Ni catalysts. Int J Energy Res 43:5392–5404

    Article  CAS  Google Scholar 

  20. Xie F-Q, Xu S-Y, Deng L-D, Xie H-M (2020) CO2 hydrogenation on Co/CeO2-б catalyst: morphology effect from CeO2 support. Int J Hydro Ener 45:26938–26952

    Article  CAS  Google Scholar 

  21. Hartadi Y, Widmann D, Behm J (2015) CO2 hydrogenation to methanol on supported Aucatalysts under moderate reaction conditions: support and particle size effects. ChemSuschem 8:456–465

    Article  CAS  Google Scholar 

  22. Sykes E-C-H, Tikhov M-S, Lambert R-M (2002) Quantum size effects in catalysis byTiO2/Platinum: the switch from partial oxidation to partial hydrogenation of styrene. Catal Lett 82:169–173

    Article  CAS  Google Scholar 

  23. Bai L-C, Wang X, Chen Q, Ye Y-F, Zheng H-Q, Guo J-H, Yin Y-D, Gao C-B (2016) Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew Chem Int Ed 55:15656–15661

    Article  CAS  Google Scholar 

  24. Dong C-Y, Zhou Y, Ta N, Shen W-J (2020) Formation mechanism and size control of ceriananocubes. CrystEngComm 22:3033–3041

    Article  CAS  Google Scholar 

  25. Igarashi A, Ichikawa N, Sato S, Takahashi R, Sodesawa T (2006) Dehydration of butanediolsover CeO2 catalysts with different particle sizes. Appl Catal A 300:50–57

    Article  CAS  Google Scholar 

  26. Rajkumar T, Sápi A, Ábel M, Kiss J, Szenti I (2021) Surface engineering of CeO2 catalysts: differences between solid solution based and interfacially designed Ce1-xMxO2 and MO/CeO2 (M=Zn, Mn) in CO2 hydrogenation reaction. Catal Lett 151:3477–3491

    Article  CAS  Google Scholar 

  27. Sing K-S-W, Everett D-H, Haul R-A-W, Moscou L, Pierotti R-A, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  28. Cao J-L, Wang Y, Zhang T-Y, Wu S-H, Yuan Z-Y (2008) Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Appl Catal B 78:120–128

    Article  CAS  Google Scholar 

  29. Glisenti A, Natile M-M, Carlotto S, Vittadini A (2014) Co- and Cu-doped titanates: toward a new generation of catalytic converters. Catal Lett 144:1466–1471

    Article  CAS  Google Scholar 

  30. Zabilskiy M, Djinovic P, Pintar A (2015) Nanashaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction. ACS Catal 5:5357–5365

    Article  CAS  Google Scholar 

  31. He Y-H, Liang X, Chen B-H (2013) Surface selective growth of ceria nanocrystals by CO absorption. Chem Commun 79:9000–9002

    Article  Google Scholar 

  32. Xie Y, Wu J-F, Jing G-J, Zhang H (2018) Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl Catal B 239:665–676

    Article  CAS  Google Scholar 

  33. Chen S-Q, Li L-Q, Hu W-B, Huang X-S, Li Q, Xu Y-S, Zuo Y, Li G-S (2015) Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater & Inter 7:22999–23007

    Article  CAS  Google Scholar 

  34. Dongil A-B, Bachiller-Baeza B, Castillejos E, Escalona N (2016) The promoter effect of potassium in CuO/CeO2 systems supported on carbon nanotubes and graphene for the CO-PROX reaction. Catal Sci Technol 6:6118–6127

    Article  CAS  Google Scholar 

  35. Guo X-L, Li J, Zhou R-X (2016) Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel 163:56–64

    Article  CAS  Google Scholar 

  36. Bao J, Yang G-H, Yoneyama Y, Tsubaki N (2019) Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal 9:3026–3053

    Article  CAS  Google Scholar 

  37. Wang W-W, Qu Z-P, Song L-X, Fu Q (2020) Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal 382:129–140

    Article  CAS  Google Scholar 

  38. Shim J-O, Na H-S, Jha A, Jang W-J, Jeong D-W, Nah I-W, Jeon B-H, Roh H-S (2016) Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions. Chem Eng J 306:908–915

    Article  CAS  Google Scholar 

  39. Li L, Song L, Chen C-Q, Zhang Y-J, Zhan Y-Y, Lin X-Y, Zheng Q, Wang H-D, Ma H-X, Ding L-H, Zhu W (2014) Modified precipitation processes and optimized copper content of CuO-CeO2 catalysts for water-gas shift reaction. Int J Hydrogen Enengy 39:19570–19582

    Article  CAS  Google Scholar 

  40. Chinchen G-C, Spencer M-S, Waugh K-C, Whan D-A (1987) Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. J Chem Soc Faraday Trans I 83:2193–2212

    Article  CAS  Google Scholar 

  41. Sheffer G-R, King T-S (1989) Differences in the promotional effect of the group IA elements on unsupported copper catalysts for carbon monoxide hydrogenation. J Catal 116:488–497

    Article  CAS  Google Scholar 

  42. Van Santen, R-A., Van Leeuwen, P.W.N.M., Moulijn, J-A., Averill, B-A. Catalysis: an integrated Approach Chapter 5: p218 (1997)

  43. Yu J-F, Yang M, Zhang J-X, Ge Q-J, Zimina A, Pruessmann T, Zheng L, Grunwaldt J-D, Sun J (2020) Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal 10:14694–14706

    Article  CAS  Google Scholar 

  44. Cui Y-Y, Dai W-L (2016) Support and morphology and crystal plane effect of Cu/CeO2 nanomaterial on the physicochemical and catalytic properties for carbonate hydrogenation. Catal Sci Technol 6:7752–7762

    Article  CAS  Google Scholar 

  45. Khobragade R, Roškarič M, Zerjav G et al (2021) Exploring the effect of morphology and surface properties of nanoshaped Pd/CeO2 catalysts on CO2 hydrogenation to methanol. Appl Catal A 627:118394

    Article  CAS  Google Scholar 

  46. Sharma S-K, Paul B, Pal R-S, Bhanja P, Banerjee A, Samanta C, Bal R (2021) Influence of indium as a promoter on the stability and selectivity of the nanocrystalline Cu/CeO2 catalyst for CO2 hydrogenation to methanol. ACS Appl Mater Inter 13:28201–28213

    Article  CAS  Google Scholar 

  47. Choi E-J, Lee Y-H, Lee D-W, Moon D-J, Lee K-Y (2017) Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts. Mol Catal 434:146–153

    Article  CAS  Google Scholar 

  48. Vourros A, Garagounis I, Kyriakou V, Carabineiro S-A-C, Maldonado-Hodar F-J, MarnellosG-E Konsolakis M (2017) Carbon dioxide hydrogenation over supported Au nanoparticles: effect of the support. J CO2 Util 19:247–256

    Article  CAS  Google Scholar 

  49. Fan L, Fujimoto K (1993) Development of active and stable ceria supported palladium catalyst for hydrogenation of carbon dioxide to methanol. Appl Catal A 106:L1–L7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21463018) and the Key Research and Development Project of Ningxia Province (The Western Light, No. 201709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguang Su.

Ethics declarations

Conflict of Interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Shi, Y., Wang, J. et al. The Strong Interaction Between CuOx and CeO2 Nanorods Enhanced Methanol Synthesis Activity for CO2 Hydrogenation. Catal Lett 153, 477–492 (2023). https://doi.org/10.1007/s10562-022-03999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03999-0

Keywords

Navigation