Skip to main content

Advertisement

Log in

Environmentally Stable Mesoporous g-C3N4 Modified Lead-Free Double Perovskite Cs2AgBiBr6 for Highly Efficient Photocatalytic Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lead halide perovskites have received attention in the field of photocatalytic hydrogenation due to its excellent light absorbing capacity and suitable conduction band position. However, lead toxicity is huge to the environment and human damage, which constrains its large-scale practical application. In this work, we rationally design a series of lead-free Cs2AgBiBr6 perovskites modified with a mesoporous g-C3N4 and demonstrate their highly efficient and stable hydrogen evolution performances under visible-light irradiation. Spectroscopy analysis illustrates the formation of type II heterojunction structure between Cs2AgBiBr6 and g-C3N4. The best g-C3N4/Cs2AgBiBr6-10 exhibits the excellent photocatalytic hydrogenation rate of 60 μmol g−1 h−1 without using any precious metals as promoters, which is superior to original Cs2AgBiBr6 and pristine g-C3N4. Furthermore, the observed photocatalytic performances are well maintained when they are directly exposed to the ambient environment for 40 days, indicating the excellent environmental stability and photocatalytic recyclability. This study offers a new opportunity for the design of air-stable and lead-free perovskite Cs2AgBiBr6 based photocatalysts for hydrogen evolution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McDaniel ND, Bernhard S (2010) Solar fuels: thermodynamics, candidates, tactics, and figures of merit. Dalton Trans 39:10021–10030

    Article  CAS  Google Scholar 

  2. Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ (2019) Halide photoredox chemistry. Chem Rev 119:4628–4683

    Article  CAS  Google Scholar 

  3. Brady MD, Sampaio RN, Wang D, Meyer TJ, Meyer GJ (2017) Dye-sensitized hydrobromic acid splitting for hydrogen solar fuel production. J Am Chem Soc 139:15612–15615

    Article  CAS  Google Scholar 

  4. Benazzi E, Rettenmaier K, Berger T, Caramori S, Berardi S, Argazzi R, Prato M, Syrgiannis Z (2020) Photoelectrochemical properties of SnO2 photoanodes sensitized by cationic perylene-Di-imide aggregates for aqueous HBr splitting. J Phys Chem C 124:1317–1329

    Article  CAS  Google Scholar 

  5. Xia C, Wang H, Kim JK, Wang J (2021) Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv Func Mater 31:2008247

    Article  CAS  Google Scholar 

  6. Wang H, Hu X, Ma Y, Zhu D, Li T, Wang J (2020) Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chin J Catal 41:95–102

    Article  CAS  Google Scholar 

  7. Xu Y-F, Yang M-Z, Chen B-X, Wang X-D, Chen H-Y, Kuang D-B, Su C-Y (2017) A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc 139:5660–5663

    Article  CAS  Google Scholar 

  8. Zhang Z, Liang Y, Huang H, Liu X, Li Q, Chen L, Xu D (2019) Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew Chem Int Ed 58:7263–7267

    Article  CAS  Google Scholar 

  9. Park S, Chang WJ, Lee CW, Park S, Ahn H-Y, Nam KT (2016) Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat Energy 2:16185

    Article  Google Scholar 

  10. Wei Z, Zhao Y, Jiang J, Yan W, Feng Y, Ma J (2020) Research progress on hybrid organic–inorganic perovskites for photo-applications. Chin Chem Lett 31:3055–3064

    Article  CAS  Google Scholar 

  11. Chen H (2017) Two-Step sequential deposition of organometal halide perovskite for photovoltaic application. Adv Func Mater 27:1605654

    Article  Google Scholar 

  12. Li T, Pan Y, Wang Z, Xia Y, Chen Y, Huang W (2017) Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. J Mater Chem A 5:12602–12652

    Article  CAS  Google Scholar 

  13. Chen J, Dong C, Idriss H, Mohammed OF, Bakr OM (2020) Metal halide perovskites for solar-to-chemical fuel conversion. Adv Energy Mater 10:1902433

    Article  CAS  Google Scholar 

  14. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  15. Huang J, Wang M, Ding L, Yang Z, Zhang K (2016) Hydrobromic acid assisted crystallization of MAPbI3−xClx for enhanced power conversion efficiency in perovskite solar cells. RSC Adv 6:55720–55725

    Article  CAS  Google Scholar 

  16. Ju D, Zheng X, Liu J, Chen Y, Zhang J, Cao B, Xiao H, Mohammed OF, Bakr OM, Tao X (2018) Reversible band gap narrowing of sn-based hybrid perovskite single crystal with excellent phase stability. Angew Chem Int Ed 57:14868–14872

    Article  CAS  Google Scholar 

  17. Wei F, Deng Z, Sun S, Hartono NTP, Seng HL, Buonassisi T, Bristowe PD, Cheetham AK (2019) Enhanced visible light absorption for lead-free double perovskite Cs2AgSbBr6. Chem Commun 55:3721–3724

    Article  CAS  Google Scholar 

  18. Wang X, Zhang T, Lou Y, Zhao Y (2019) All-inorganic lead-free perovskites for optoelectronic applications, materials chemistry. Frontiers 3:365–375

    CAS  Google Scholar 

  19. Bresolin B-M, Sgarbossa P, Bahnemann DW, Sillanpää M (2020) Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Sep Purif Technol 251:117320

    Article  CAS  Google Scholar 

  20. Li S, Wang H, Yang P, Wang L, Cheng X, Yang K (2021) Composition optimization of lead-free double perovskite Cs2AgIn1xBixCl6 for efficient and stable photoluminescence. J Alloy Compd 854:156930

    Article  CAS  Google Scholar 

  21. Slavney AH, Leppert L, Bartesaghi D, Gold-Parker A, Toney MF, Savenije TJ, Neaton JB, Karunadasa HI (2017) Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J Am Chem Soc 139:5015–5018

    Article  CAS  Google Scholar 

  22. Lao J, Xu W, Jiang C, Zhong N, Tian B, Lin H, Luo C, Travas-sejdic J, Peng H, Duan C-G (2021) An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J Mater Chem C 9:5706–5712

    Article  CAS  Google Scholar 

  23. Hou P, Yang W, Wan N, Fang Z, Zheng J, Shang M, Fu D, Yang Z, Yang W (2021) Precursor engineering for high-quality Cs2AgBiBr6 films toward efficient lead-free double perovskite solar cells. J Mater Chem C 9:9659–9669

    Article  CAS  Google Scholar 

  24. Zhou L, Xu Y-F, Chen B-X, Kuang D-B, Su C-Y (2018) Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 14:1703762

    Article  Google Scholar 

  25. Kumar S, Hassan I, Regue M, Gonzalez-Carrero S, Rattner E, Isaacs MA, Eslava S (2021) Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr6–Cu–RGO nanocomposite for photocatalytic CO2 reduction. J Mater Chem A 9:12179–12187

    Article  CAS  Google Scholar 

  26. Wang T, Yue D, Li X, Zhao Y (2020) Lead-free double perovskite Cs2AgBiBr 6/RGO composite for efficient visible light photocatalytic H2 evolution. Appl Catal B 268:118399

    Article  CAS  Google Scholar 

  27. Filip MR, Hillman S, Haghighirad AA, Snaith HJ, Giustino F (2016) Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett 7:2579–2585

    Article  CAS  Google Scholar 

  28. Lin W, Chen G, Li E, He L, Yu W, Peng G, Chen H, Guo T (2020) Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl Mater Interfaces 12:43967–43975

    Article  CAS  Google Scholar 

  29. Zhang Y, Shi J, Ding X, Wu J, Zheng Y-Z, Tao X (2020) Stable mixed-organic-cation perovskite MA1–xFAxPbI3 integrated with MoS2 for enhanced visible-light photocatalytic H2 evolution. Ind Eng Chem Res 59:20667–20675

    Article  CAS  Google Scholar 

  30. Huang J, Zou S, Lin J, Liu Z, Qi M (2021) Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets. Nano Res 14:4079–4086

    Article  CAS  Google Scholar 

  31. Wang B-H, Gao B, Zhang J-R, Chen L, Junkang G, Shen S, Au C-T, Li K, Cai M-Q, Yin S-F (2021) Thickness-induced band-gap engineering in lead-free double perovskite Cs2AgBiBr6 for highly efficient photocatalysis. Phys Chem Chem Phys 23:12439–12448

    Article  CAS  Google Scholar 

  32. Wang Y, Huang H, Zhang Z, Wang C, Yang Y, Li Q, Xu D (2021) Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl Catal B 282:119570

    Article  CAS  Google Scholar 

  33. Jiang Y, Li K, Wu X, Zhu M, Zhang H, Zhang K, Wang Y, Loh KP, Shi Y, Xu Q-H (2021) In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution. ACS Appl Mater Interfaces 13:10037–10046

    Article  CAS  Google Scholar 

  34. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  CAS  Google Scholar 

  35. Chen Y, Liu Y, Ma Z (2021) Graphitic C3N4 modified by Ru(II)-based dyes for photocatalytic H2 evolution. Coll Surf A 614:126119

    Article  CAS  Google Scholar 

  36. Zhu Y, Cui Y, Xiao B, Ou-yang J, Li H, Chen Z (2021) Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin. Mater Sci Semicond Process 129:105767

    Article  CAS  Google Scholar 

  37. Jiang X-H, Yu F, Wu D-S, Tian L, Zheng L-L, Chen L-S, Chen P, Zhang L-S, Zeng H, Chen Y, Zou J-P (2021) Isotypic heterojunction based on Fe-doped and terephthalaldehyde-modified carbon nitride for improving photocatalytic degradation with simultaneous hydrogen production. Chin Chem Lett 32:2782–2786

    Article  CAS  Google Scholar 

  38. Malavasi L, Romani L, Speltini A, Ambrosio F, Mosconi E, Profumo A, Margadonna S, Milella A, Fracassi F, Listorti A, De Angelis F, Marelli M (2020) Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew Chem Int Ed Engl 133:3655–3662

    Google Scholar 

  39. Liu X, Zhao Y, Yang X, Liu Q, Yu X, Li Y, Tang H, Zhang T (2020) Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl Catal B 275:119144

    Article  CAS  Google Scholar 

  40. Tang H, Chang S, Tang G, Liang W (2017) AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 391:440–448

    Article  CAS  Google Scholar 

  41. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G (2009) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A 94:387–392

    Article  CAS  Google Scholar 

  42. Bai X, Wang L, Zong R, Zhu Y (2013) Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J Phys Chem C 117:9952–9961

    Article  CAS  Google Scholar 

  43. Lu Z, Li C, Han J, Wang L, Wang S, Ni L, Wang Y (2018) Construction 0D/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance. Appl Catal B 237:919–926

    Article  CAS  Google Scholar 

  44. Li Z-J, Hofman E, Li J, Davis AH, Tung C-H, Wu L-Z, Zheng W (2018) Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv Func Mater 28:1704288

    Article  Google Scholar 

  45. Kong Z-C, Liao J-F, Dong Y-J, Xu Y-F, Chen H-Y, Kuang D-B, Su C-Y (2018) Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett 3:2656–2662

    Article  CAS  Google Scholar 

  46. Pu YC, Fan HC, Liu TW, Chen JW (2017) Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. J Mater Chem A 5:25438–25449

    Article  CAS  Google Scholar 

  47. Ou M, Tu W, Yin S, Xing W, Wu S, Wang H, Wan S, Zhong Q, Xu R (2018) Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed 57:13570–13574

    Article  CAS  Google Scholar 

  48. Liao S, Zong X, Seger B, Pedersen T, Yao T, Ding C, Shi J, Chen J, Li C (2016) Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat Commun 7:11474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21771147), Key Projects of Sichuan Education Department (Grant No. 16ZA0176), the Fundamental Research Funds of China West Normal University (Grant Nos. 17C037, 15E005) and the Excellence Fund Project of China West Normal University (Grant No. 17YC008)

Funding

The Fundamental Research Funds of China West Normal University, Grant No. 17C037

Author information

Authors and Affiliations

Authors

Contributions

KS: Investigation, Formal analysis, Writing–review and editing. JG: Investigation, original draft data curation. LY: Resources, Methodology. CZ: Conceptualization, Supervision, Project administration.

Corresponding authors

Correspondence to Kunpeng Song or Chunmei Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Gou, J., Yang, L. et al. Environmentally Stable Mesoporous g-C3N4 Modified Lead-Free Double Perovskite Cs2AgBiBr6 for Highly Efficient Photocatalytic Hydrogen Evolution. Catal Lett 153, 534–543 (2023). https://doi.org/10.1007/s10562-022-03997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03997-2

Keywords

Navigation