Skip to main content
Log in

Novel Pd/Al2O3–CeO2 Nanosheets for One-Pot Synthesis of Methyl Isobutyl Ketone from Acetone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Pd/Al2O3–CeO2 nanosheets catalyst was fabricated successfully via coprecipitation strategy for the one-pot conversion of acetone to methyl isobutyl ketone (MIBK). Compared with Pd/Al2O3 or Pd/CeO2, Pd/Al2O3–CeO2 exhibited the highest catalytic activity (xACE = 46%) and selectivity (SMIBK = 85%), thereby indicating the excellent synergistic effect between Al2O3 and CeO2. The DFT calculation results indicated that the adsorbed acetone in Pd/Al2O3–CeO2 possessed a stronger orbital energy level than acetone, demonstrating that Pd/Al2O3–CeO2 could increase electron activity of acetone and thus activate acetone hydrogenation process. Meanwhile, more electrons were transferred from CeO2 to Al2O3 and reactants (i.e. acetone, diacetone alcohol, mesityl oxide). When reactants were adsorbed in the catalyst model, some chemical bonds (i.e. C = O, C–H, C–O and C = C) were extended accordingly, indicating that Pd/Al2O3–CeO2 could reduce the reaction barrier and accelerate acetone hydrogenation.

Graphical Abstract

The Pd/Al2O3–CeO2 nanosheets exhibited the highest catalytic activity (xACE = 46%, SMIBK = 85%) due to the unique synergistic effect between Al2O3 and CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takarroumt N, Kacimi M, Bozon-Verduraz F, Liotta LF, Ziyad M (2013) J Mol Catal A: Chem 377:42–50

    Article  CAS  Google Scholar 

  2. Di Cosimo JI, Torres G, Apesteguı́a CR (2002) J Catal 208:114–123

    Article  Google Scholar 

  3. Mediavilla M, Melo L, Díaz Y, Albornoz A, Llanos A, Brito JL (2008) Microporous Mesoporous Mater 116:627–632

    Article  CAS  Google Scholar 

  4. Yang PP, Yu JF, Wang ZL, Xu MP, Liu QS, Yang XW, Wu TH (2005) Catal Commun 6:107–111

    Article  CAS  Google Scholar 

  5. Melo L, Giannetto G, Cardozo L, Llanos A, Garcia L, Magnoux P, Guisnet M, Alvarez F (1999) Catal Lett 60:217–222

    Article  CAS  Google Scholar 

  6. Hu YJ, Mei YX, Lin BN, Du XH, Xu F, Xie HS, Wang K, Zhou YH (2021) RSC Adv 11:48–56

    Article  CAS  Google Scholar 

  7. Nicol W, du Toit EL (2004) Chem Eng Process 43:1539–1545

    Article  CAS  Google Scholar 

  8. Talwalkar S, Mahajani S (2006) Appl Catal A 302:140–148

    Article  CAS  Google Scholar 

  9. Zhou YH, Duan H, Lin BN, Han K, Wei JR (2018) React Kinet Mech Catal 125:303–317

    Article  CAS  Google Scholar 

  10. Zhu Q, Duan H, Lin B, Zhu Y, Hu Y, Zhou Y (2019) Catal Lett 149:2636–2644

    Article  CAS  Google Scholar 

  11. Waters G, Richter O, Kraushaar-Czarnetzki B (2006) Ind Eng Chem Res 45:6111–6117

    Article  CAS  Google Scholar 

  12. Bagabas AA, Mokhtar M, Akhmedov VM, Narasimharao K, Basahel SN, Al-Rabiah A (2014) Catal Lett 144:1278–1288

    Article  CAS  Google Scholar 

  13. Rao PVR, Kumar VP, Rao GS, Chary KVR (2012) Catal. Sci Technol 2:1665

    CAS  Google Scholar 

  14. Chikán V, Molnár Á, Balázsik K (1999) J Catal 184:134–143

    Article  Google Scholar 

  15. Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI (2010) Appl Catal B 97:57–71

    Article  CAS  Google Scholar 

  16. Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A (2017) Angew Chem 129:16209–16213

    Article  Google Scholar 

  17. Li K, Lyu T, He J, Jang BWL (2020) Front Chem Sci Eng 14:929–936

    Article  CAS  Google Scholar 

  18. Feng T, Tang R, Shang N, Feng C, Gao S, Wang C (2017) Appl Organomet Chem 31:e3889

    Article  Google Scholar 

  19. Cao F, Song Z, Zhang Z, Xiao YS, Zhang M, Hu X, Liu ZW, Qu Y (2021) ACS Appl Mater Interfaces 13:24957–24965

    Article  CAS  Google Scholar 

  20. Rahmani F, Haghighi M, Estifaee P (2014) Microporous Mesoporous Mater 185:213–223

    Article  CAS  Google Scholar 

  21. Aghamohammadi S, Haghighi M, Maleki M, Rahemi N (2017) Mol Catal 431:39–48

    Article  CAS  Google Scholar 

  22. Gao C, Lin Y-J, Li Y, Evans DG, Li D-Q (2009) Ind Eng Chem Res 48:6544–6549

    Article  CAS  Google Scholar 

  23. Kamonsuangkasem K, Therdthianwong S, Therdthianwong A, Thammajak N (2017) Appl Catal B 218:650–663

    Article  CAS  Google Scholar 

  24. Silva F, Martinez D, Ruiz J, Mattos L, Hori C, Noronha F (2008) Appl Catal A 335:145–152

    Article  CAS  Google Scholar 

  25. Sun L, Jiang L, Hua X, Zheng Y, Sun X, Zhang M, Su H, Qi C (2019) J Alloys Compd 811:152052

    Article  CAS  Google Scholar 

  26. Farooq M, Ramli A, Subbarao D (2011) J Chem Eng Data 57:26–32

    Article  Google Scholar 

  27. Pakharukova VP, Yatsenko DA, Gerasimov EY, Tsybulya SV (2021) J Solid State Chem 302:122425

    Article  CAS  Google Scholar 

  28. Li H, Wang Y, Wang S, Wang X, Hu J (2017) Fuel 208:576–586

    Article  CAS  Google Scholar 

  29. Colussi S, Trovarelli A, Vesselli E, Baraldi A, Comelli G, Groppi G, Llorca J (2010) Appl Catal A 390:1–10

    Article  CAS  Google Scholar 

  30. Yuzhakova T, Rakić V, Guimon C, Auroux A (2007) Chem Mater 19:2970–2981

    Article  CAS  Google Scholar 

  31. Mullins D, Overbury S, Huntley D (1998) Surf Sci 409:307–319

    Article  CAS  Google Scholar 

  32. Hassanzadeh-Tabrizi SA, Taheri-Nassaj E (2010) J Alloys Compd 494:289–294

    Article  CAS  Google Scholar 

  33. Bao Q, Bu T, Yan J, Zhang C, Ning C, Zhang Y, Hao M, Zhang W, Wang Z (2017) Catal Lett 147:1540–1550

    Article  Google Scholar 

  34. Liguori F, Oldani C, Capozzoli L, Calisi N, Barbaro P (2021) Appl Catal A 610:117957

    Article  CAS  Google Scholar 

  35. Duan H, Wang Z, Cui L, Lin B, Zhou Y (2018) Ind Eng Chem Res 57:12358–12366

    Article  CAS  Google Scholar 

  36. Zhang C, Liu B, Li W, Liu X, Wang K, Deng Y, Guo Z, Lv Z (2021) J Mater Chem A 9:11665–11673

    Article  CAS  Google Scholar 

  37. Zhang C, Liu B, Cheng X, Guo Z, Zhuang T, Lv Z (2020) Chem Eng J 393:124774

    Article  CAS  Google Scholar 

  38. He T, Qu Y, Wang J (2018) Ind Eng Chem Res 57:2773–2786

    Article  CAS  Google Scholar 

  39. Lin F, Wang H, Zhao Y, Fu J, Mei D, Jaegers NR, Gao F, Wang Y (2021) JACS Au 1:41–52

    Article  CAS  Google Scholar 

  40. Ho CR, Zheng S, Shylesh S, Bell AT (2018) J Catal 365:174–183

    Article  CAS  Google Scholar 

  41. Fan D, Dong X, Yu Y, Zhang M (2017) Phys Chem Chem Phys 19:25671–25682

    Article  CAS  Google Scholar 

  42. Zheng Y, Okumura M, Hua X, Sonoura A, Su H, Nobutou H, Sun X, Sun L, Xiao F, Qi C (2021) J Catal 401:188–199

    Article  CAS  Google Scholar 

  43. Nikolopoulos AA, Jang BWL, Spivey JJ (2005) Appl Catal A 296:128–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the doctor foundation of Shandong province (No. ZR2019BB010), the China Postdoctoral Science Foundation funded project (2020M672015), the Natural Science Foundation of National (NSFC21978141), the Open Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2020K007), the Open Project of Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (KFJJ2021009), Anhui Laboratory of Molecule-Based Materials (fzj21001), The fund of the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &Hubei Key Laboratory of Catalysis and Materials Science (CHCL20004), Talent Fund for Province and Ministry Co-construction Collaborative Innovation Center of Eco-Chemical Engineering (No. STHGYX2205), Open Project of Guangdong Provincial Key Laboratory of Industrial Surfactant (GDPKLIS-2021-01), the special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, and Qingdao Postdoctoral Applied Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associativeinterest that represents a conflict of interest in connection with thework submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Zhang, Y., Gong, Y. et al. Novel Pd/Al2O3–CeO2 Nanosheets for One-Pot Synthesis of Methyl Isobutyl Ketone from Acetone. Catal Lett 153, 441–452 (2023). https://doi.org/10.1007/s10562-022-03991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03991-8

Keywords

Navigation