Skip to main content

Advertisement

Log in

Evolution of Surface Structure on Pd–Cl/Alumina Catalyst During CO Purification Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Eliminating hydrogen from CO via preferential oxidation is an important process in Coal to Ethylene Glycol technology for achieving target products with high yield. During the reaction, applied Pd–Cl/alumina catalyst inevitably experienced structural reconstruction stem from reaction conditions. The deactivation behavior of catalyst was clarified via spectroscopic and microscopic observations. It proposed that surface evolutions about metal sintering should be primarily responsible for the degradation of catalytic efficiency. Owing to chlorine effusion, dependent ferrous contamination and Pd aggregation was emerged on catalyst during the operation. The detachment of coordinative chlorine from active sites in the form of hydrogen chloride favored the accessing of adsorbate on Pd sites which further accelerated the coalescence of clusters. Despite the textural perturbation about porosity and surface area was negligible, on the other hand, the elimination of surface hydroxyls may contribute much for surface passivation and undermined Pd–Cl-Al interfacial interactions.

Graphical Abstract

Diagram illustrated the surface evolutions of catalyst during the operation in hydrogen preferential oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. Zhang HL, Pan J, Zhou QT, Xia F (2021) Nanometal thermocatalysts: transformations, deactivation, and mitigation. Small 17(7):2005771

    Article  CAS  Google Scholar 

  2. Behafarid F, Roldan Cuenya B (2013) Towards the understanding of sintering phenomena at the nanoscale: geometric and environmental effects. Top Catal 56(15–17):1542

    Article  CAS  Google Scholar 

  3. Bai YX, Zhang JF, Yang GH, Zhang QD, Pan JX, Xie HJ, Liu XC, Han YZ, Tan YS (2018) Insight into the nanoparticle growth in supported Ni catalysts during the early stage of co hydrogenation reaction: the important role of adsorbed CO molecules. ACS Catal 8(7):6367

    Article  CAS  Google Scholar 

  4. Murzin DY (2014) Catalyst deactivation and structure sensitivity. Catal Sci Technol 4(9):3340

    Article  CAS  Google Scholar 

  5. Moulijn JA, van Diepen AE, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Catal A 212(1–2):3

    Article  CAS  Google Scholar 

  6. Shen Y, Guo Y, Wang L, Wang Y, Guo Y, Gong X, Lu G (2011) The stability and deactivation of Pd–Cu–Clx/Al2O3 catalyst for low temperature CO oxidation: an effect of moisture. Catal Sci Technol 1(7):1202

    Article  CAS  Google Scholar 

  7. Zhang S, Cargnello M, Cai W, Murray CB, Graham GW, Pan X (2016) Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. J Catal 337:240

    Article  CAS  Google Scholar 

  8. Hejral U, Muller P, Balmes O, Pontoni D, Stierle A (2016) Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions. Nat Commun 7:10964

    Article  CAS  Google Scholar 

  9. Monai M, Montini T, Melchionna M, Duchon T, Kus P, Tsud N, Prince KC, Matolin V, Gorte RJ, Fornasiero P (2016) Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts. Appl Catal B 197:271

    Article  CAS  Google Scholar 

  10. Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao FS (2020) Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation. J Am Chem Soc 142(38):16429

    Article  CAS  Google Scholar 

  11. Somorjai GA, Vanhove MA (1989) Adsorbate-induced restructuring of surfaces. Prog Surf Sci 30(3–4):201

    Article  CAS  Google Scholar 

  12. Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Sur Sci Rep 27:1

    Article  CAS  Google Scholar 

  13. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald Ripening? Acc Chem Res 46(8):1720

    Article  CAS  Google Scholar 

  14. Sun JM, Ma D, Zhang H, Liu XM, Han XW, Bao XH, Weinberg G, Pfander N, Su DS (2006) Toward monodispersed silver nanoparticles with unusual thermal stability. J Am Chem Soc 128(49):15756

    Article  CAS  Google Scholar 

  15. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212(1–2):17

    Article  CAS  Google Scholar 

  16. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118(10):4981

    Article  CAS  Google Scholar 

  17. Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48(12):3193

    Article  CAS  Google Scholar 

  18. Cui X, Huang R, Deng D (2021) Catalytic conversion of C1 molecules under mild conditions. EnergyChem 3(1):100050

    Article  CAS  Google Scholar 

  19. Yue HR, Zhao YJ, Ma XB, Gong JL (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41(11):4218

    Article  CAS  Google Scholar 

  20. Wang C, Han L, Chen P, Zhao G, Liu Y, Lu Y (2016) High-performance, low Pd-loading microfibrous-structured Al-fiber@ns-AlOOH@Pd catalyst for CO coupling to dimethyl oxalate. J Catal 337:145

    Article  CAS  Google Scholar 

  21. Xu ZN, Sun J, Lin CS, Jiang XM, Chen QS, Peng SY, Wang MS, Guo GC (2013) High-performance and long-lived Pd nanocatalyst directed by shape effect for CO oxidative coupling to dimethyl oxalate. ACS Catal 3(2):118

    Article  CAS  Google Scholar 

  22. Qiao L, Li Q, Zhou Z, Si R, Yao Y (2016) Inert can be advantageous: advisable reconstruction and application of palladium chloride for the preferential oxidation of the hydrogen impurity in carbon monoxide streams. ChemCatChem 8(11):1909

    Article  CAS  Google Scholar 

  23. Qiao BT, Lin J, Li L, Wang AQ, Liu JY, Zhang T (2014) Highly active small palladium clusters supported on ferric hydroxide for carbon monoxide-tolerant hydrogen oxidation. ChemCatChem 6(2):547

    Article  CAS  Google Scholar 

  24. Conrad H, Ertl G, Latta EE (1974) Coadsorption of hydrogen and carbon-monoxide on a Pd (110) surface. J Catal 35(3):363

    Article  CAS  Google Scholar 

  25. Morkel M, Gn R, Freund H-J (2003) Ultrahigh vacuum and high-pressure coadsorption of CO and H2 on Pd(111): a combined SFG, TDS, and LEED study. J Chem Phys 119(20):10853

    Article  CAS  Google Scholar 

  26. Jones MG, Nevell TG (1990) Oxidation of hydrogen over supported palladium. J Catal 122(2):219

    Article  CAS  Google Scholar 

  27. Avgouropoulos G, Ioannides T (2005) CO tolerance of Pt and Rh catalysts: effect of CO in the gas-phase oxidation of H2 over Pt and Rh supported catalysts. Appl Catal B 56(1–2):77

    Article  CAS  Google Scholar 

  28. Oh HS, Yang JH, Costello CK, Wang YM, Bare SR, Kung HH, Kung MC (2002) Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts. J Catal 210(2):375

    Article  CAS  Google Scholar 

  29. Iyagba ET, Hoost TE, Nwalor JU, Goodwin JG (1990) The effect of chlorine modification of silica-supported Ru on its CO hydrogenation properties. J Catal 123(1):1

    Article  CAS  Google Scholar 

  30. Peterson EJ, Delariva AT, Lin S, Johnson RS, Guo H, Miller JT, Kwak JH, Peden CHF, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun 5:4885

    Article  CAS  Google Scholar 

  31. Baraj E, Ciahotny K, Hlincik T (2021) The water gas shift reaction: catalysts and reaction mechanism. Fuel 288:119817

    Article  CAS  Google Scholar 

  32. Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341(6147):771

    Article  CAS  Google Scholar 

  33. Lin W, Zhu YX, Wu NZ, Xie YC, Murwani I, Kemnitz E (2004) Total oxidation of methane at low temperature over Pd/TiO2/Al2O3: effects of the support and residual chlorine ions. Appl Catal B 50(1):59

    Article  CAS  Google Scholar 

  34. Reguer S, Kergourlay F, Foy E, Neff D, Vantelon D, Cotte M, Mirambet F, Dillmann P (2020) XANES at the Cl K-edge as a relevant technique to reveal the iron archaeological artefact dechlorination treatments. J Anal At Spectrom 35(10):2358

    Article  CAS  Google Scholar 

  35. Zhan C, Wang Q, Zhou L, Han X, Wanyan Y, Chen J, Zheng Y, Wang Y, Fu G, Xie Z, Tian ZQ (2020) Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J Am Chem Soc 142(33):14134

    Article  CAS  Google Scholar 

  36. Paredes-Nunez A, Lorito D, Schuurman Y, Guilhaume N, Meunier FC (2015) Origins of the poisoning effect of chlorine on the CO hydrogenation activity of alumina-supported cobalt monitored by operando FT-IR spectroscopy. J Catal 329:229

    Article  CAS  Google Scholar 

  37. Schubert MM, Venugopal A, Kahlich MJ, Plzak V, Behm RJ (2004) Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/alpha-Fe2O3. J Catal 222(1):32

    Article  CAS  Google Scholar 

  38. Toso A, Colussi S, Padigapaty S, de Leitenburg C, Trovarelli A (2018) High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Appl Catal B 230:237

    Article  CAS  Google Scholar 

  39. Date M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Edit 43(16):2129

    Article  CAS  Google Scholar 

  40. Kim KD, Nam IS, Chung JS, Lee JS, Ryu SG, Yang YS (1994) Supported PdCl2-CuCl2 catalysts for carbon-monoxide oxidation 1 effects of catalyst composition and reaction conditions. Appl Catal B 5(1–2):103

    Article  CAS  Google Scholar 

  41. Liu L, Corma A (2020) Evolution of isolated atoms and clusters in catalysis. Trends Chem 2(4):383

    Article  CAS  Google Scholar 

  42. Ouyang RH, Liu JX, Li WX (2013) Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J Am Chem Soc 135(5):1760

    Article  CAS  Google Scholar 

  43. Johnston P, Joyner RW (1993) Influence of chlorine on the lability of small rhodium particles in carbon monoxide. J Chem Soc Faraday Trans 89(5):863

    Article  CAS  Google Scholar 

  44. Kondarides DI, Verykios XE (1998) Effect of chlorine on the chemisorptive properties of Rh/CeO2 catalysts studied by XPS and temperature programmed desorption techniques. J Catal 174(1):52

    Article  CAS  Google Scholar 

  45. Ouyang L, Tian PF, Da GJ, Xu XC, Ao C, Chen TY, Si R, Xu J, Han YF (2015) The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: interfaces of Pd and PdO domains. J Catal 321:70

    Article  CAS  Google Scholar 

  46. Karhu H, Kalantar A, Väyrynen IJ, Salmi T, Murzin DY (2003) XPS analysis of chlorine residues in supported Pt and Pd catalysts with low metal loading. Appl Catal A 247(2):283

    Article  CAS  Google Scholar 

  47. Parkinson GS, Novotny Z, Argentero G, Schmid M, Pavelec J, Kosak R, Blaha P, Diebold U (2013) Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat Mater 12(8):724

    Article  CAS  Google Scholar 

  48. Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S (2010) Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132(23):7968

    Article  CAS  Google Scholar 

  49. Newton MA, Belver-Coldeira C, Martinez-Arias A, Fernandez-Garcia M (2007) Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat Mater 6(7):528

    Article  CAS  Google Scholar 

  50. Valero MC, Raybaud P, Sautet P (2006) Influence of the hydroxylation of gamma-Al2O3 surfaces on the stability and diffusion of single Pd atoms: a DFT study. J Phys Chem B 110(4):1759

    Article  CAS  Google Scholar 

  51. Addou R, Senftle TP, O’Connor N, Janik MJ, van Duin ACT, Batzill M (2014) Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2x1. ACS Nano 8(6):6321

    Article  CAS  Google Scholar 

  52. Gravil PA, Toulhoat H (1999) Ethylene, sulphur, and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion. Surf Sci 430(1–3):192

    Article  CAS  Google Scholar 

  53. Kogler M, Kock EM, Klotzer B, Schachinger T, Wallisch W, Henn R, Huck CW, Hejny C, Penner S (2016) High-temperature carbon deposition on oxide surfaces by CO disproportionation. J Phys Chem C 120(3):1795

    Article  CAS  Google Scholar 

  54. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co, and Ni. Appl Surf Sci 257(7):2717

    Article  CAS  Google Scholar 

  55. Lin J, Qiao BT, Li L, Guan HL, Ruan CY, Wang AQ, Zhang WS, Wang XD, Zhang T (2014) Remarkable effects of hydroxyl species on low-temperature CO (preferential) oxidation over Ir/Fe(OH)x catalyst. J Catal 319:142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFB0307301, 2017YFA0206802, 2018YFA0704502), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020800), the Science and Technology Service Network Initiative (KFJ-STSQYZD-048), the NSF of China (21703247), the Science Foundation of Fujian Province (2018J05029, 2019J05156, 2019H0053) and Guizhou Province ([2018]2193, 2020-1-10). This work was also supported by the BL14W1 beam line of Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuangen Yao.

Ethics declarations

Conflict of interest

We declare that the authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Zhou, Z., Zeng, Y. et al. Evolution of Surface Structure on Pd–Cl/Alumina Catalyst During CO Purification Process. Catal Lett 153, 493–502 (2023). https://doi.org/10.1007/s10562-022-03981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03981-w

Keywords

Navigation