Skip to main content
Log in

Oxidative Dehydrogenation of Propane to Olefins Promoted by Zr Modified ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Several ratios of highly active Zr modified ZSM-5 catalysts with good stability were prepared via the sol–gel method for oxidative dehydrogenation of propane (ODHP) to olefins (C2H4 + C3H6). The influence of ZSM-5 modification with Zr was studied, and the catalysts were thoroughly characterized with respect to structural morphology, crystallinity, specific surface area, ionic state, and surface acidity. The results showed that Zr modification of ZSM-5 leads to increased pore volume and crystallite size. The morphological and elemental analysis indicated irregularly nano-sized Zr/ZSM-5 catalysts, with a homogeneous dispersion of Zr particles and increased lattice oxygen. The incorporation of Zr to ZSM-5 moderated the surface acidity, caused an increase in the distribution of surface acid strength, and decreased the weak acid sites ratio, making it suitable for olefin selectivity. Zr/ZSM-5 (1:4) exhibited the best catalytic yield and long-time stability towards continuous propane conversion (59.48%), which was accompanied by 87.44% olefins selectivity and olefin yield of 52.23% due to the moderated acidic sites coupled with an increment in the lattice oxygen. Hence, this work offers insight into tuning the surface acidity of zeolites material that enhances superior mass transfer of reactants and products and has better stability and potential to be employed in ODHP applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Loiland JA, Zhao Z, Patel A, Hazin P (2019) Boron-containing catalysts for the oxidative dehydrogenation of ethane/propane mixtures. Ind Eng Chem Res 58(6):2170–2180. https://doi.org/10.1021/acs.iecr.8b04906

    Article  CAS  Google Scholar 

  2. Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  Google Scholar 

  3. Chen F, Hao J, Yu Y, Cheng D-g, Zhan X (2022) The influence of external acid strength of hierarchical ZSM-5 zeolites on n-heptane catalytic cracking. Microporous Mesoporous Mater 330:111575. https://doi.org/10.1016/j.micromeso.2021.111575

    Article  CAS  Google Scholar 

  4. Khalil YP (2015) Propylene in demand: roadblocks and opportunities

  5. Global ethylene market data and industry growth analysis (2020)

  6. Liu S, Zhang B, Liu G (2021) Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins. React Chem Eng 6(1):9–26. https://doi.org/10.1039/D0RE00381F

    Article  CAS  Google Scholar 

  7. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal 4(10):3357–3380. https://doi.org/10.1021/cs5003417

    Article  CAS  Google Scholar 

  8. Yu C, Ge Q, Xu H, Li W (2006) Propane dehydrogenation to propylene over Pt-based catalysts. Catal Lett 112(3–4):197–201. https://doi.org/10.1007/s10562-006-0203-y

    Article  CAS  Google Scholar 

  9. Bugrova TA, Dutov VV, Svetlichnyi VA, Cortés Corberán V, Mamontov GV (2019) Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catal Today 333:71–80. https://doi.org/10.1016/j.cattod.2018.04.047

    Article  CAS  Google Scholar 

  10. Qiu B, Jiang F, Lu W-D, Yan B, Li W-C, Zhao Z-C, Lu A-H (2020) Oxidative dehydrogenation of propane using layered borosilicate zeolite as the active and selective catalyst. J Catal 385:176–182. https://doi.org/10.1016/j.jcat.2020.03.021

    Article  CAS  Google Scholar 

  11. Otroshchenko T, Jiang G, Kondratenko VA, Rodemerck U, Kondratenko EV (2021) Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem Soc Rev 50(1):473–527. https://doi.org/10.1039/d0cs01140a

    Article  CAS  Google Scholar 

  12. Sun L, Chai Y, Dai W, Wu G, Guan N, Li L (2018) Oxidative dehydrogenation of propane over Pt-Sn/Si-beta catalysts: key role of Pt-Sn interaction. Catal Sci Technol 8(12):3044–3051. https://doi.org/10.1039/c8cy00712h

    Article  CAS  Google Scholar 

  13. Fan X, Liu D, Zhao Z, Li J, Liu J (2020) Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane. Catal Today 339:67–78. https://doi.org/10.1016/j.cattod.2019.02.036

    Article  CAS  Google Scholar 

  14. Lu W-D, Wang D, Zhao Z, Song W, Li W-C, Lu A-H (2019) Supported boron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane. ACS Catal 9(9):8263–8270. https://doi.org/10.1021/acscatal.9b02284

    Article  CAS  Google Scholar 

  15. Chaturbedy P, Ahamed M, Eswaramoorthy M (2018) Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: exceptional selectivity for olefins at high conversion. ACS Omega 3(1):369–374. https://doi.org/10.1021/acsomega.7b01489

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhou Y, Huang L, Xue M, Zhang S (2011) Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation. Ind Eng Chem Res 50(13):7896–7902. https://doi.org/10.1021/ie1024694

    Article  CAS  Google Scholar 

  17. Song Z, Takahashi A, Nakamura I, Fujitani T (2010) Phosphorus-modified ZSM-5 for conversion of ethanol to propylene. Appl Catal A 384(1–2):201–205. https://doi.org/10.1016/j.apcata.2010.06.035

    Article  CAS  Google Scholar 

  18. Lu J, Zhao Z, Xu C, Duan A, Zhang P (2006) CrHZSM-5 zeolites - Highly efficient catalysts for catalytic cracking of isobutane to produce light olefins. Catal Lett 109(1–2):65–70. https://doi.org/10.1007/s10562-006-0058-2

    Article  CAS  Google Scholar 

  19. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts. Catal Lett 81(1–2):83–88. https://doi.org/10.1023/A:1016064123823

    Article  CAS  Google Scholar 

  20. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts. Catal Lett 84(3–4):259–264. https://doi.org/10.1023/A:1021448508130

    Article  CAS  Google Scholar 

  21. Lu J, Zhao Z, Xu C, Zhang P, Duan A (2006) FeHZSM-5 molecular sieves - Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catal Commun 7(4):199–203. https://doi.org/10.1016/j.catcom.2005.10.011

    Article  CAS  Google Scholar 

  22. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Dehydrogenative cracking of n-butane using double-stage reaction. Appl Catal A 230(1–2):195–202. https://doi.org/10.1016/S0926-860X(01)01014-6

    Article  CAS  Google Scholar 

  23. Chen C, Sun M, Hu Z, Ren J, Zhang S, Yuan Z-Y (2019) New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catal Sci Technol 9(8):1979–1988. https://doi.org/10.1039/C9CY00237E

    Article  Google Scholar 

  24. Xiao H, Zhang J, Wang X, Zhang Q, Xie H, Han Y, Tan Y (2015) A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catal Sci Technol 5(8):4081–4090. https://doi.org/10.1039/C5CY00665A

    Article  CAS  Google Scholar 

  25. Tsoncheva T, Ivanova L, Paneva D, Mitov I, Minchev C, Fröba M (2009) Cobalt and iron oxide modified mesoporous zirconia: preparation, characterization and catalytic behaviour in methanol conversion. Microporous Mesoporous Mater 120(3):389–396. https://doi.org/10.1016/j.micromeso.2008.12.007

    Article  CAS  Google Scholar 

  26. Varzaneh AZ, Towfighi J, Mohamadalizadeh A (2014) Comparative study of naphtha cracking over SAPO-34 and HZSM-5: effects of cerium and zirconium on the catalytic performance. J Anal Appl Pyrol 107:165–173. https://doi.org/10.1016/j.jaap.2014.02.017

    Article  CAS  Google Scholar 

  27. Li D, Xing B, Wang B, Li R (2020) Activity and selectivity of methanol-to-olefin conversion over Zr-modified H-SAPO-34/H-ZSM-5 zeolites—a theoretical study. Fuel Process Technol 199:106302. https://doi.org/10.1016/j.fuproc.2019.106302

    Article  CAS  Google Scholar 

  28. Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2018) Conversion of methanol to light olefins over nanosized [Fe, Al]ZSM-5 zeolites: influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous Mesoporous Mater 263:243–250. https://doi.org/10.1016/j.micromeso.2017.12.029

    Article  CAS  Google Scholar 

  29. Li X-b, Jiang X-y (2013) Propylene oligomerization to produce diesel fuel on Zr-ZSM-5 catalyst. Chem Technol Fuels Oils 49(2):156–164. https://doi.org/10.1007/s10553-013-0427-7

    Article  CAS  Google Scholar 

  30. Lv G, Bin F, Song C, Wang K, Song J (2013) Promoting effect of zirconium doping on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3. Fuel 107:217–224. https://doi.org/10.1016/j.fuel.2013.01.050

    Article  CAS  Google Scholar 

  31. Zhang D, Wang R, Yang X (2008) Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene. Catal Lett 124(3–4):384–391. https://doi.org/10.1007/s10562-008-9481-x

    Article  CAS  Google Scholar 

  32. Al-Sultan FS, Basahel SN, Narasimharao K (2019) Yttrium oxide supported La2O3 nanomaterials for catalytic oxidative cracking of n-propane to olefins. Catal Lett 150(1):185–195. https://doi.org/10.1007/s10562-019-02927-z

    Article  CAS  Google Scholar 

  33. Kusampally U, Dhachapally N, Kola R, Kamatala CR (2020) Zeolite anchored Zr-ZSM-5 as an eco-friendly, green, and reusable catalyst in Hantzsch synthesis of dihydropyridine derivatives. Mater Chem Phys 242:122497. https://doi.org/10.1016/j.matchemphys.2019.122497

    Article  CAS  Google Scholar 

  34. Bin F, Song C, Lv G, Song J, Wang K, Li X (2013) Soot low-temperature combustion on Cu–Zr/ZSM-5 catalysts in O2/He and NO/O2/He atmospheres. Proc Combust Inst 34(2):2303–2311. https://doi.org/10.1016/j.proci.2012.07.075

    Article  CAS  Google Scholar 

  35. Zhang X, Zhu Y, Huang P, Zhu M (2016) Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization. RSC Adv 6(73):69357–69364. https://doi.org/10.1039/C6RA16622A

    Article  CAS  Google Scholar 

  36. Ardizzone S, Bianchi CL (2000) XPS characterization of sulphated zirconia catalysts: the role of iron. Surf Interface Anal 30(1):77–80. https://doi.org/10.1002/1096-9918(200008)30:1%3c77::AID-SIA771%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  37. Rayner GB, Kang D, Zhang Y, Lucovsky G (2002) Nonlinear composition dependence of x-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma-deposited zirconium silicate alloy thin films. J Vac Sci Technol B 20(4):1748–1758. https://doi.org/10.1116/1.1493788

    Article  CAS  Google Scholar 

  38. Jones SD, Neal LM, Everett ML, Hoflund GB, Hagelin-Weaver HE (2010) Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3 methanol steam reforming catalysts. Appl Surf Sci 256(24):7345–7353. https://doi.org/10.1016/j.apsusc.2010.05.021

    Article  CAS  Google Scholar 

  39. Zhang Y, Zhao Y, Otroshchenko T, Lund H, Pohl M-M, Rodemerck U, Linke D, Jiao H, Jiang G, Kondratenko EV (2018) Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation. Nat Commun 9(1):3794. https://doi.org/10.1038/s41467-018-06174-5

    Article  CAS  Google Scholar 

  40. Peng DQ, Bai XD, Chen BS (2005) Corrosion behavior of carbon implanted ZIRLO alloy in 1 M H2SO4. J Mater Sci 40(5):1169–1175. https://doi.org/10.1007/s10853-005-6934-0

    Article  CAS  Google Scholar 

  41. Zhou FY, Wang BL, Qiu KJ, Lin WJ, Li L, Wang YB, Nie FL, Zheng YF (2012) Microstructure, corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application. Mater Sci Eng C 32(4):851–857. https://doi.org/10.1016/j.msec.2012.02.002

    Article  CAS  Google Scholar 

  42. Hossain MM (2017) Kinetics of oxidative dehydrogenation of propane to propylene using lattice oxygen of VO x/CaO/γAl2O3 catalysts. J Ind Eng Chem Res 56(15):4309–4318

    Article  CAS  Google Scholar 

  43. Fukudome K, Ikenaga N-o, Miyake T, Suzuki T (2011) Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica. Catal Sci Technol 1(6):987–998. https://doi.org/10.1039/C1CY00115A

    Article  CAS  Google Scholar 

  44. Engtrakul C, Mukarakate C, Starace AK, Magrini KA, Rogers AK, Yung MM (2016) Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal Today 269:175–181. https://doi.org/10.1016/j.cattod.2015.10.032

    Article  CAS  Google Scholar 

  45. Ates A, Hardacre C, Goguet A (2012) Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe–SiO2: influence of the iron species and acid sites. Appl Catal A 441–442:30–41. https://doi.org/10.1016/j.apcata.2012.06.038

    Article  CAS  Google Scholar 

  46. Kaeding WW, Butter SA (1980) Production of chemicals from methanol: I. Low molecular weight olefins. J Catal 61(1):155–164. https://doi.org/10.1016/0021-9517(80)90351-6

    Article  CAS  Google Scholar 

  47. Lin L, Qiu C, Zhuo Z, Zhang D, Zhao S, Wu H, Liu Y, He M (2014) Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J Catal 309:136–145. https://doi.org/10.1016/j.jcat.2013.09.011

    Article  CAS  Google Scholar 

  48. Sá J, Ace M, Delgado JJ, Goguet A, Hardacre C, Morgan K (2011) Activation of alkanes by gold-modified lanthanum oxide. ChemCatChem 3(2):394–398. https://doi.org/10.1002/cctc.201000285

    Article  CAS  Google Scholar 

  49. Akay G (2016) Co-assembled supported catalysts: synthesis of nano-structured supported catalysts with hierarchic pores through combined flow and radiation induced Co-assembled nano-reactors. Catalysts 6(6):80. https://doi.org/10.3390/catal6060080

    Article  CAS  Google Scholar 

  50. Fei ZY, Sun B, Zhao L, Ji WJ, Au CT (2013) Strong morphological effect of Mn3O4 nanocrystallites on the catalytic activity of Mn3O4 and Au/Mn3O4 in benzene combustion. Chemistry 19(20):6480–6487. https://doi.org/10.1002/chem.201204112

    Article  CAS  Google Scholar 

  51. Reddy JK, Motokura K, Koyama T-r, Miyaji A, Baba T (2012) Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. J Catal 289:53–61. https://doi.org/10.1016/j.jcat.2012.01.014

    Article  CAS  Google Scholar 

  52. Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3(6):1154–1164. https://doi.org/10.1021/cs400068v

    Article  CAS  Google Scholar 

  53. Tian J, Tan J, Xu M, Zhang Z, Wan S, Wang S, Lin J, Wang Y (2019) Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: the role of oxidative coupling of methyl. Sci Adv 5(3):eaav8063. https://doi.org/10.1126/sciadv.aav8063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from NSFC (No. 51976216/51888103/52161145105), Beijing Municipal Natural Science Foundation (JQ20017) and MOST (2017YFA0402800). Daniel thanks the financial support of the ANSO and Belt & Road scholarship. Fonzeu and Fahad are grateful to the Chinese Academy of Sciences for the financial support of ANSO and CAS-TWAS Presidents’ scholarships. El Kasmi is grateful for the support of CAS (PIFI) for senior international scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Tian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, S., Monguen, C.K.F., El Kasmi, A. et al. Oxidative Dehydrogenation of Propane to Olefins Promoted by Zr Modified ZSM-5. Catal Lett 153, 285–299 (2023). https://doi.org/10.1007/s10562-022-03977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03977-6

Keywords

Navigation