Skip to main content
Log in

Photochemical Freeze Synthesis of Ultrafine Platinum Nanocatalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Here, well-dispersed and ordered ultrafine Pt nanocatalysts (Pt/SWCNTs) were synthesized by ice-photochemical method on single-walled carbon nanotubes (SWCNTs) without stabilizers and reducing agents. The catalytic performance of Pt/SWCNTs was studied in the reduction of 4-nitrophenol (4-NP). The morphology and crystal structure of as-synthesized materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The prepared samples all contained diffraction peaks of C and Pt with small size and good dispersion by XRD analysis. HR-TEM images displayed that the average particle sizes of the three samples were 1.2 ± 0.2 nm, 1.0 ± 0.2 nm and 1.1 ± 0.1 nm, respectively. The XPS analysis results confirmed the existence of Pt0. The catalytic performance test results showed that the prepared Pt/SWCNTs could effectively catalyze the reduction of 4-NP to 4-aminophenol (4-AP) with the apparent rate constants of 0.36 min−1, 0.28 min−1, and 0.35 min−1, respectively. Compared with literatures, they all had better catalytic activity. Though after seven cycles, the high catalytic activity was maintained with no significant deactivation and indicating high stability. The experimental results showed that Pt nano-rectangular array catalysts with uniform distribution and ultrasmall particle size were synthesized by a simple freezing method under the irradiation of visible (Vis)/ultraviolet (UV) light. It was demonstrated that the dispersion of Pt(II) reaction intermediates was effectively limited by light induction, carrier-substrate interaction and the use of the natural domain limitation of the ice lattice. Thus controlling the aggregation of Pt(0) to a certain extent and obtaining ordered dispersed ultrafine Pt nanoparticles. This method not only provides a method for the synthesis of ultrafine nanoparticles, but also provides a new idea for single-atom dispersed nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46(7):3655–3670

    Article  CAS  Google Scholar 

  2. Hong C, Zhu D, Ma D, Wu X, Zhu Q (2019) An effective amino acid-assisted growth of ultrafine palladium nanocatalysts toward superior synergistic catalysis for hydrogen generation from formic acid. Inorg Chem Front 6(4):975–981

    Article  CAS  Google Scholar 

  3. Zhang L, Liu X, Zhou X, Gao S, Shang N, Feng C, Wang C (2018) Ultrafine Pd nanoparticles anchored on nitrogen-doping carbon for boosting catalytic transfer hydrogenation of nitroarenes. ACS Omega 3(9):10843–10850

    Article  CAS  Google Scholar 

  4. Cao H, Huang H, Chen Z, Karadeniz B, Lu J, Cao R (2017) Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl Mater Interfaces 9(6):5231–5236

    Article  CAS  Google Scholar 

  5. Zhu Q, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem-US 1(2):220–245

    Article  CAS  Google Scholar 

  6. Chalgin A, Song C, Tao P, Shang W, Deng T, Wu J (2020) Effect of supporting materials on the electrocatalytic activity, stability and selectivity of noble metal-based catalysts for oxygen reduction and hydrogen evolution reactions. Prog Nat Sci 30(3):289–297

    Article  CAS  Google Scholar 

  7. He Z, Ning X, Yang G, Wang H, Cao Y, Peng F, Yu H (2021) Selective oxidation of glycerol over supported noble metal catalysts. Catal Today 365:162–171

    Article  CAS  Google Scholar 

  8. Lee Y, Kim E, Park Y, Kim J, Ryu W, Rho J, Kim K (2018) Photodeposited metal-semiconductor nanocomposites and their applications. J Materiomics 4(2):83–94

    Article  Google Scholar 

  9. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116(23):14587–14619

    Article  CAS  Google Scholar 

  10. Xie W, Zhang Y, Liew KY, Li J (2012) Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes. Sci China Chem 55(9):1811–1818

    Article  CAS  Google Scholar 

  11. Su BQ, Feng YX, Xian L, Sheng L, Li QQ (2021) The synthesis of Pt-CNTs nanocatalyst promoted by visible light and catalytic reduction of 4-nitrophenol. J Nano Res 68:81–90

    Article  CAS  Google Scholar 

  12. Xian L, Engelbrecht L, Barkhuysen S, Koch KR (2016) Room temperature photo-induced deposition of platinum mirrors and nano-layers from simple Pt(II) precursor complexes in water-methanol solutions. RSC Adv 6(40):34014–34018

    Article  CAS  Google Scholar 

  13. Feng YX, Su BQ, Xian L, Ma Y, Sheng L, Cao NJ (2019) In situ synthesis of surfactant-free Pt nanoparticles supported on multi-walled carbon nanotubes under visible light. Chem Pap 74(4):1189–1197

    Article  CAS  Google Scholar 

  14. Wei H, Huang K, Zhang L, Ge B, Wang D, Lang J, Ma J, Wang D, Zhang S, Li Q, Zhang R, Hussain N, Lei M, Liu LM, Wu H (2018) Ice melting to release reactants in solution syntheses. Angew Chem Int Ed 57(13):3354–3359

    Article  CAS  Google Scholar 

  15. Zhao S, Wang Y, Dong J, He C, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1(12):1–10

    Article  Google Scholar 

  16. Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107(50):13838–13842

    Article  CAS  Google Scholar 

  17. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41(17):5577–5587

    Article  Google Scholar 

  18. Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Muhler M (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim Acta 54(17):4208–4215

    Article  CAS  Google Scholar 

  19. Shi W, Zhang B, Lin Y, Wang Q, Zhang Q, Su D (2016) Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy. ACS Catal 6(11):7844–7854

    Article  CAS  Google Scholar 

  20. Litkohi HR, Bahari A, Gatabi MP (2020) Improved oxygen reduction reaction in PEMFCs by functionalized CNTs supported Pt-M (M = Fe, Ni, Fe-Ni) bi- and tri-metallic nanoparticles as efficient electrocatalyst. Int J Hydrogen Energ 45(43):23543–23552

    Article  CAS  Google Scholar 

  21. Ma J, Habrioux A, Pisarek M, Lewera A, Alonso-Vante N (2013) Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochem Commun 29:12–16

    Article  CAS  Google Scholar 

  22. Hull RV, Li L, Xing Y, Chusuei CC (2006) Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem Mater 18:1780–1788

    Article  CAS  Google Scholar 

  23. Finney JL, Bowron DT, Soper AK, Loerting T, Mayer E, Hallbrucker A (2002) Structure of a new dense amorphous ice. Phys Rev Lett 89(205503):1–4

    Google Scholar 

  24. Kouklin N, Tzolov M, Straus D, Yin A, Xu J (2004) Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition. Appl Phys Lett 85(19):4463–4465

    Article  CAS  Google Scholar 

  25. Esquivel-Peña V, Bastos-Arrieta J, Muñoz M, Mora-Tamez L, Munguía-Acevedo NM, Ocampo AL, de Gyves J (2019) Metal nanoparticle-carbon nanotubes hybrid catalysts immobilized in a polymeric membrane for the reduction of 4-nitrophenol. SN Appl Sci 1(4):1–11

    Article  Google Scholar 

  26. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371(1):101–106

    Article  CAS  Google Scholar 

  27. Ozdemir OK (2019) A novel method to produce few layers of graphene as support materials for platinum catalyst. Chem Pap 73(2):387–395

    Article  CAS  Google Scholar 

  28. Rajashekar B, Raman V, Kazuki O, Koichi M, Noriyoshi M (2016) Sacrificial reducing agent free photo-generation of platinum nano particle over carbon/TiO2 for highly efficient oxygen reduction reaction. Sci Rep-UK 6(1):1–7

    Google Scholar 

  29. Languer MP, Scheffer FR, Feil AF, Baptista DL, Migowski P, Machado GJ, de Moraes DP, Dupont J, Teixeira SR, Weibel DE (2013) Photo-induced reforming of alcohols with improved hydrogen apparent quantum yield on TiO2 nanotubes loaded with ultra-small Pt nanoparticles. Int J Hydrogen Energy 38(34):14440–14450

    Article  CAS  Google Scholar 

  30. Şen F, Gökaǧaç G (2007) Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J Phys Chem C 111(15):5715–5720

    Article  Google Scholar 

  31. Mason MG, Gerenser LJ, Lee ST (1977) Electronic structure of catalytic metal clusters studied by X-ray photoemission spectroscopy. Phys Rev Lett 39(5):288–291

    Article  CAS  Google Scholar 

  32. Shen Y, Zhang Z, Long R, Xiao K, Xi J (2014) Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. ACS Appl Mater Interfaces 6(17):15162–15170

    Article  CAS  Google Scholar 

  33. Ismail AA, Albukhari SM, Mahmoud MHH (2021) Highly efficient and accelerated photoreduction of nitrobenzene over visible-light-driven PtO@ Cr2O3 nanocomposites. Surf Interfaces 27(101527):1–8

    Google Scholar 

  34. Jin Z, Chen Z, Li Q, Xi C, Zheng X (1994) On the conditions and mechanism of PtO2 formation in the photoinduced conversion of H2PtCl6. J Photochem Photobiol A 81(3):177–182

    Article  CAS  Google Scholar 

  35. Xin Y, Liu J, Zhou Y, Liu W, Gao J, Xie Y, Yin Y, Zou Z (2011) Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources 196(3):1012–1018

    Article  CAS  Google Scholar 

  36. Aditya T, Pal A, Pal T (2015) Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem Commun 51(46):9410–9431

    Article  CAS  Google Scholar 

  37. Wang YL, Dai YM, Tsai MH (2020) Highly efficient and recyclable Fe3C/Au@NG catalyst for 4-nitrophenol reduction. Catal Commun 149:106251

    Article  Google Scholar 

  38. Jeong EJ, Im E, Hyunc DC, Lee JW, Moona GD (2020) A recyclable catalyst made of two-dimensional gold-loaded cellulose paper for reduction of 4-nitrophenol. J Ind Eng Chem 89:204–211

    Article  CAS  Google Scholar 

  39. Ansar SM, Kitchens C (2016) The impact of gold nanoparticle stabilizing ligand on colloidal catalytic reduction of 4-Nitrophenol siyam. ACS Catal 6(8):5553–5560

    Article  CAS  Google Scholar 

  40. Zhang Y, Li C, Li X, Xu J, Yang X, Zhang Z (2020) Facile γ-ray irradiation synthesis of Pt/GA nanocomposite for catalytic reduction of 4-nitrophenol. Green Energy Environ 6(5):734–742

    Article  Google Scholar 

  41. Revathy TA, Dhanavel S, Sivaranjani T, Narayanan V, Maiyalagan T, Stephen A (2018) Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol. Appl Surf Sci 449:764–771

    Article  CAS  Google Scholar 

  42. Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A 268(1):61–66

    Article  CAS  Google Scholar 

  43. Wang Y, Li Q, Zhang P, Connor DO, Varma RS, Yu M, Hou D (2018) One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. J Colloid Interface Sci 539:161–167

    Article  Google Scholar 

  44. Zhu Y, Wang WD, Sun X, Fan M, Hu X, Dong Z (2020) Palladium nanoclusters confined in MOF@ COP as a novel nanoreactor for catalytic hydrogenation. ACS Appl Mater Interfaces 12(6):7285–7294

    Article  CAS  Google Scholar 

  45. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111(12):4596–4605

    Article  CAS  Google Scholar 

  46. Zhang J, Hou C, Huang H, Zhang L, Jiang Z, Chen G, Zheng L (2013) Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 9(4):538–544

    Article  CAS  Google Scholar 

  47. Zhang W, Tan F, Wang W, Qiu X, Qiao X, Chen J (2012) Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J Hazard Mater 217:36–42

    Google Scholar 

  48. Zou P, Wang M, Zhao L, Dai L, Wang Y (2016) One-step synthesis of Pt@ three-dimensional graphene composite hydrogel: an efficient recyclable catalyst for reduction of 4-nitrophenol. Appl Organomet Chem 30(8):722–725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities, Northwest Minzu University 2019 (Grant No. 31920190017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, L., Xi, B., Ma, J. et al. Photochemical Freeze Synthesis of Ultrafine Platinum Nanocatalysts. Catal Lett 153, 338–347 (2023). https://doi.org/10.1007/s10562-022-03976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03976-7

Keywords

Navigation