Skip to main content
Log in

Synthesis of Low Silicon Submicron-Sized SAPO-34 Molecular Sieve by Micron Seed Activation Method to Improve the Performance of MTO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Submicron-sized low-silica SAPO-34 zeolite crystals with the hierarchical hollow structure are synthesized using a micron-sized SPAO-34 seed activation method hydrothermal synthesis in a low silica gel that contains triethylamine and polyethylene glycol. The resulting catalysts were characterized by XRD analysis, SEM, TEM, BET surface area analysis, etc.; The ~ 600–800 nm SAPO-34 crystals show superior MTO reaction performance of 10 h catalytic lifetime and enhanced olefins (C2H4 + C3H6) selectivity of 91.0%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26:323–345

    Article  CAS  Google Scholar 

  2. Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater 164:239–250

    Article  CAS  Google Scholar 

  3. Askari S, Bashardoust Siahmard A, Halladj R, Miar Alipour S (2016) Different techniques and their effective parameters in nano SAPO-34 synthesis: A review. Powder Technol 301:268–287

    Article  CAS  Google Scholar 

  4. Sun Q, Xie Z, Yu J (2017) The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl Sci Rev 5:542–558

    Article  Google Scholar 

  5. Zhong J, Han J, Wei Y, Tian P, Guo X, Liu Z, Song C (2017) Recent advances of the nano-hierarchical SAPO-34 in methanol to olefins (MTO) reaction and other applications. Catal Sci Technol. https://doi.org/10.1039/C7CY01466J

    Article  Google Scholar 

  6. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A 362:193–199

    Article  CAS  Google Scholar 

  7. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins. Catal Today 213:219–225

    Article  Google Scholar 

  8. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222

    Article  CAS  Google Scholar 

  9. Sun Q, Wang N, Guo G, Yu J (2015) Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chem Commun 51:16397–16400

    Article  CAS  Google Scholar 

  10. Wang Q, Wang L, Wang H, Li Z, Wu H, Li G, Zhang X, Zhang S (2011) Synthesis, characterization and catalytic performance of SAPO-34 molecular sieves for methanol-to-olefin (MTO) reaction. Asia-Pac J Chem Eng 6:596–605

    Article  CAS  Google Scholar 

  11. Wilson S, Barger P (1999) The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous Mesoporous Mater 29:117–126

    Article  CAS  Google Scholar 

  12. Rostami RB, Ghavipour M, Behbahani RM, Aghajafari A (2014) Improvement of SAPO-34 performance in MTO reaction by utilizing mixed-template catalyst synthesis method. J Nat Gas Sci Eng 20:312–318

    Article  CAS  Google Scholar 

  13. Di C-Y, Li X-F, Wang P, Li Z-H, Fan B-B, Dou T (2017) Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology. Pet Sci 14:203–213

    Article  CAS  Google Scholar 

  14. Chen G, Sun Q, Yu J (2017) Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance. Chem Commun 53:13328–13331

    Article  CAS  Google Scholar 

  15. Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596

    Article  CAS  Google Scholar 

  16. Jang H-G, Min H-K, Lee JK, Hong SB, Seo G (2012) SAPO-34 and ZSM-5 nanocrystals’ size effects on their catalysis of methanol-to-olefin reactions. Appl Catal A 437–438:120–130

    Article  Google Scholar 

  17. Dai W, Li N, Li L, Guan N, Hunger M (2011) Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves. Catal Commun 16:124–127

    Article  CAS  Google Scholar 

  18. Dai W, Cao G, Yang L, Wu G, Dyballa M, Hunger M, Guan N, Li L (2017) Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density, Catalysis. Sci Technol 7:607–618

    CAS  Google Scholar 

  19. Sun Q, Wang N, Bai R, Chen X, Yu J (2016) Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost- effective synthesis and superior MTO performance. J Mater Chem A 4:14978–14982

    Article  CAS  Google Scholar 

  20. Sun C, Wang Y, Chen H, Wang X, Wang C, Zhang X (2019) Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction. Catal Today. https://doi.org/10.1016/j.cattod.2019.04.038

    Article  Google Scholar 

  21. Campelo JM, Lafont F, Marinas JM (2000) Ojeda, Studies of catalyst deactivation in methanol conversion with high, medium and small pore silicoaluminophosphates. Appl Catal A 192:85–96

    Article  CAS  Google Scholar 

  22. Xing A, Yuan D, Tian D, Sun Q (2019) Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction. Microporous Mesoporous Mater 288:109562

    Article  CAS  Google Scholar 

  23. Wei Y, Zhang D, He Y, Xu L, Yang Y, Su B-L, Liu ZJCL (2007) Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catal Lett 114:30–35

    Article  CAS  Google Scholar 

  24. Cui Y, Zhang Q, He J, Wang Y, Wei F (2013) Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology 11:468–474

    Article  CAS  Google Scholar 

  25. Razavian M, Fatemi S (2014) Fabrication of SAPO-34 with tuned mesopore structure. Z Anorg Allg Chem 640:1855–1859

    Article  CAS  Google Scholar 

  26. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) Crystalline silicoaluminophosphates. Google Patents

  27. Zhu J, Cui Y, Wang Y, Wei F (2009) Direct synthesis of hierarchical zeolite from a natural layered material. Chem Commun. https://doi.org/10.1039/B902661D

    Article  Google Scholar 

  28. Li Y, Huang Y, Guo J, Zhang M, Wang D, Wei F, Wang Y (2014) Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catal Today 233:2–7

    Article  CAS  Google Scholar 

  29. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl Chem. https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  30. Parlitz B, Schreier E, Zubowa HL, Eckelt R, Lieske E, Lischke G, Fricke R (1995) Isomerization of n-Heptane over Pd-Loaded Silico-Alumino-Phosphate Molecular Sieves. J Catal 155:1–11

    Article  CAS  Google Scholar 

  31. Popova M, Minchev C, Kanazirev V (1998) Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium. Appl Catal A 169:227–235

    Article  CAS  Google Scholar 

  32. Ashtekar S, Chilukuri SVV, Chakrabarty DK (1994) Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: a study of silicon incorporation. J Phys Chem 98:4878–4883

    Article  CAS  Google Scholar 

  33. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng YZ (2009) Effect of SAPO-34’s composition on its physico-chemical properties and deactivation in MTO process. Appl Catal A 364:48–56

    Article  CAS  Google Scholar 

  34. Ye L, Cao F, Ying W, Fang D, Sun QJJOPM (2011) Effect of different TEAOH/DEA combinations on SAPO- 34’s synthesis and catalytic performance. J Porous Mater 18:225–232

    Article  CAS  Google Scholar 

  35. Lee Y-J, Baek S-C, Jun K-W (2007) Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Appl Catal A 329:130–136

    Article  CAS  Google Scholar 

  36. Beato P, Svelle S, Olsbye U, Bordiga S, Lillerud K, Janssens T, Bjørgen M, Joensen F (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem 51:5810–5831

    Article  Google Scholar 

  37. Lee KY, Chae H-J, Jeong S-Y, Seo G (2009) Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Appl Catal A 369:60–66

    Article  CAS  Google Scholar 

  38. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance. J Mater Chem A 3:19783–19789

    Article  CAS  Google Scholar 

  39. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catal 5:1922–1938

    Article  CAS  Google Scholar 

  40. Liu Z, Wakihara T, Nishioka D, Oshima K, Takewaki T, Okubo T (2014) One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method. Chem Commun 50:2526–2528

    Article  CAS  Google Scholar 

  41. Venna SR, Carreon MA (2008) Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. J Phys Chem B 112:16261–16265

    Article  CAS  Google Scholar 

  42. Yang H, Liu X, Lu G, Wang Y (2016) Synthesis of SAPO-34 nanoplates via hydrothermal method. Microporous Mesoporous Mater 225:144–153

    Article  CAS  Google Scholar 

  43. Yang M, Tian P, Wang C, Yuan Y, Yang Y, Xu S, He Y, Liu Z (2014) A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chem Commun 50:1845–1847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the CNOOC Energy Technology & Services Limited Major Projects Foundation (E- 719TC23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ji.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Yu, H., Zang, J. et al. Synthesis of Low Silicon Submicron-Sized SAPO-34 Molecular Sieve by Micron Seed Activation Method to Improve the Performance of MTO. Catal Lett 153, 188–197 (2023). https://doi.org/10.1007/s10562-022-03975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03975-8

Keywords

Navigation