Skip to main content
Log in

Insights into Microstructure and Surface Properties of Pd/C for Liquid Phase Phenol Hydrogenation to Cyclohexanone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Phenol hydrogenation over Pd/C is a promising technology to produce cyclohexanone, but how to select the carbon supports is not clear. Herein, three types of activated carbon, i.e., produced from coal (C-C), coconut shell (C-CS) and wood (C-W), were selected for the synthesis of Pd/C. The Pd/C catalysts show significant differences in the phenol hydrogenation, and the catalytic activity is in the order of Pd/C-W > Pd/C-CS > Pd/C-C. For example, the phenol conversion of Pd/C-W is 81.6% in dichloromethane, about 4 times higher than that of Pd/C-C. Moreover, Pd/C-W can achieve a phenol conversion of 97.2% with a cyclohexanone selectivity of 97.4% in n-hexane, and has good reusability during at least five reaction cycles. Larger surface area, higher surface N and O contents, more surface defects, abundant acidic and alkaline sites are the key reasons for the superior catalytic activity of Pd/C-W as compared to Pd/C-CS and Pd/C–C.

Graphical Abstract

The type of activated carbon has a remarkable effect on the microstructure and surface properties of Pd/C, and the corresponding catalytic properties for the liquid phase phenol hydrogenation to cyclohexanone. Larger surface area, higher surface N and O contents, more surface defects, abundant acidic and alkaline sites are the key reasons for the superior catalytic activity of Pd/C-W as compared to Pd/C-CS and Pd/C-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Zhang JS, Wang XC, Antonietti M, Li HR (2010) Angew Chem Int Ed 49:3356–3359

    Article  CAS  Google Scholar 

  2. Zhong JW, Chen JZ, Chen LM (2014) Catal Sci Technol 4:3555–3569

    Article  CAS  Google Scholar 

  3. Reisi B, Chermahini AN, Rodríguez-Padrón D, Muñoz-Batista MJ, Luque R (2021) J Ind Eng Chem 102:103–111

    Article  CAS  Google Scholar 

  4. Wu Q, Wang L, Zhao BZ, Huang L, Yu ST, Ragauskas AJ (2022) J Colloid Interf Sci 605:82–90

    Article  CAS  Google Scholar 

  5. Hu S, Zhang X, Qu ZY, Jiang H, Liu YF, Huang J, Xing WH, Chen RZ (2017) J Ind Eng Chem 53:333–340

    Article  CAS  Google Scholar 

  6. Chary KVR, Naresh D, Vishwanathan V, Sadakane M, Ueda W (2007) Catal Commun 8:471–477

    Article  CAS  Google Scholar 

  7. Chen H, Sun JS (2021) J Ind Eng Chem 94:78–91

    Article  CAS  Google Scholar 

  8. Chen YZ, Liaw CW, Lee LI (1999) Appl Catal A-Gen 177:1–8

    Article  CAS  Google Scholar 

  9. Auer E, Freund A, Pietsch J, Tacke T (1998) Appl Catal A-Gen 173:259–271

    Article  CAS  Google Scholar 

  10. Crawford CJ, Qiao Y, Liu YQ, Huang DM, Yan WJ, Oscarson S, Chen S, Seeberger PH (2021) Org Process Res Dev 25:1573–1578

    Article  CAS  Google Scholar 

  11. Yao MQ, Liang WY, Chen HL, Zhang XM (2020) Catal Lett 150:2377–2384

    Article  CAS  Google Scholar 

  12. Blanco E, Sepulveda C, Cruces K, García-Fierro JL, Ghampson IT, Escalona N (2020) Catal Today 356:376–383

    Article  CAS  Google Scholar 

  13. Zhang X, Du Y, Jiang H, Liu YF, Chen RZ (2019) Catal Lett 149:813–822

    Article  CAS  Google Scholar 

  14. Ruiz-García C, Heras F, Alonso-Morales N, Calvo L, Rodriguez JJ, Gilarranz MA (2018) Catal Sci Technol 8:2598–2605

    Article  Google Scholar 

  15. Li YF, Xiong FM, Wang ZW, Yan JM, Wang SJ, Zhang ZX, Jing XL (2021). Catal Lett. https://doi.org/10.1007/s10562-021-03783-6

    Article  Google Scholar 

  16. Gu YW, Li YY, Zhang JX, Zhang HY, Wu CH, Lin J, Zhou JY, Fan YH, Murugadoss V, Guo ZH (2020) Chem Eng Sci 216:115588

    Article  CAS  Google Scholar 

  17. Yang GX, Zhang JX, Jiang H, Liu YF, Chen RZ (2019) Appl Catal A-Gen 588:117306

    Article  CAS  Google Scholar 

  18. Zhang CH, Yang GX, Jiang H, Liu YF, Chen RZ, Xing WH (2020) Chinese J Chem Eng 28:2600–2606

    Article  CAS  Google Scholar 

  19. Hu S, Yang GX, Jiang H, Liu YF, Chen RZ (2018) Appl Surf Sci 435:649–655

    Article  CAS  Google Scholar 

  20. Jiang H, Qu ZY, Liu YF, Liu XL, Wang GL, Wang YM, Xu L, Ding KH, Xing WH, Chen RZ (2020) Ind Eng Chem Res 59:13848–13851

    Article  CAS  Google Scholar 

  21. Wang C, Li BD, Lin HQ, Yuan YZ (2012) J Power Sources 202:200–208

    Article  CAS  Google Scholar 

  22. Akinfalabi SI, Rashid U, Yunus R, Taufiq-Yap YH (2017) Renew Energ 111:611–619

    Article  CAS  Google Scholar 

  23. Karpe SB, Bang AD, Adhyapak DP, Adhyapak PV (2022) Sens Actuators B-Chem 354:131203

    Article  CAS  Google Scholar 

  24. Guo ZY, Li X, Hu S, Ye GH, Zhou XG, Coppens MO (2020) Angew Chem Int Ed 59:1548–1551

    Article  CAS  Google Scholar 

  25. Jiang SX, Chen MF, Wang XY, Zhang Y, Huang C, Zhang YP, Wang Y (2019) Chem Eng J 355:478–486

    Article  CAS  Google Scholar 

  26. Tong Y, Lu XF, Sun WN, Nie GD, Yang L, Wang C (2014) J Power Sources 261:221–226

    Article  CAS  Google Scholar 

  27. Mahanthappa M, Kottam N, Yellappa S (2019) Appl Surf Sci 475:828–838

    Article  CAS  Google Scholar 

  28. Ma YJ, Chen X, Wu HS, Shang YY, Tan PF, Wu LD, Wu H, Pan J, Xiong X (2017) J Alloy Compd 702:489–498

    Article  CAS  Google Scholar 

  29. Cai YX, Liu QF, Yu LW, Meng ZZ, Hu Z, Yuan Q, Savija B (2021) Cement Concrete Comp 122:104153

    Article  CAS  Google Scholar 

  30. Xu TY, Zhang QF, Cen J, Xiang YZ, Lia XN (2015) Appl Surf Sci 324:634–639

    Article  CAS  Google Scholar 

  31. Ding SS, Zhang CH, Liu YF, Jiang H, Chen RZ (2017) Appl Surf Sci 425:484–491

    Article  CAS  Google Scholar 

  32. Zhang JX, Zhang CH, Jiang H, Liu YF, Chen RZ (2020) Ind Eng Chem Res 59:10768–10777

    Article  CAS  Google Scholar 

  33. Zhu YY, Yu GQ, Yang J, Yuan M, Xu D, Dong ZP (2019) J Colloid Interf Sci 533:259–267

    Article  CAS  Google Scholar 

  34. Rong SD, Zhang R, Zhu X, Zhang MZ, Li J, Zhang LQ (2021) Int J Hydrogen Energ 46:18207–18223

    Article  CAS  Google Scholar 

  35. Kong XQ, Gong YT, Mao SJ, Wang Y (2018) ChemNanoMat 4:432–450

    Article  CAS  Google Scholar 

  36. Miao JF, Lu J, Jiang H, Liu YF, Xing WH, Ke XB, Chen RZ (2019) AIChE J 65:e16692

    Article  Google Scholar 

  37. Cui JH, Liu SJ, Xue H, Wang XQ, Hao ZQ, Liu R, Shang W, Zhao D, Ding H (2021) Chinese J Chem Eng 32:159–167

    Article  CAS  Google Scholar 

  38. Shao YH, Zhang JX, Jiang H, Chen RZ (2021) Ind Eng Chem Res 60:5806–5815

    Article  CAS  Google Scholar 

  39. Ye FY, Zhang DM, Xue T, Wang YM, Guan YJ (2014) Green Chem 16:3951–3957

    Article  CAS  Google Scholar 

  40. Zhao M, Wang X, Liu YA, He YF, Li DQ (2021) Acta Chim Sinica 79:1518–1525

    Article  Google Scholar 

  41. Liu C, Wang JS, Zhu P, Liu HO, Zhang XF (2022) Chem Eng J 430:132589

    Article  CAS  Google Scholar 

  42. Wang Y, Yao J, Li HR, Su DS, Antonietti M (2011) J Am Chem Soc 133:2362–2365

    Article  CAS  Google Scholar 

  43. Zhang CH, Zhang JX, Shao YH, Jiang H, Chen RZ, Xing WH (2021) Catal Lett 151:1013–1024

    Article  CAS  Google Scholar 

  44. Zeng SS, Lyu FC, Nie HJ, Zhan YM, Bian HD, Tian YY, Li Z, Wang AW, Lu J, Li YY (2017) J Mater Chem A 5:13189–13195

    Article  CAS  Google Scholar 

  45. Feng G, Liu Z, Chen P, Lou H (2014) RSC Adv 4:49924–49929

    Article  CAS  Google Scholar 

  46. Chen WJ, Xu XM, Zhang CS, Feng YQ, Wang YH, Wang J, Zhang RQ (2021) Fuel 293:120503

    Article  CAS  Google Scholar 

  47. Wei ZJ, Liu HY, Chen YD, Guo DC, Pan RF, Liu YX (2018) Chinese J Chem Eng 26:2542–2548

    Article  CAS  Google Scholar 

  48. Patil RD, Sasson Y (2015) Appl Catal A-Gen 499:227–231

    Article  CAS  Google Scholar 

  49. Xu X, Li H, Wang Y (2014) ChemCatChem 6:3328–3332

    Article  CAS  Google Scholar 

  50. Shao YH, Zhang JX, Du Y, Jiang H, Liu YF, Chen RZ (2019) Ind Eng Chem Res 58:14678–14687

    Article  CAS  Google Scholar 

  51. Fan MY, Long Y, Zhu YY, Hu XW, Dong ZP (2018) Appl Catal A-Gen 568:130–138

    Article  CAS  Google Scholar 

  52. Liu XT, Pang F, Ge JP (2018) Chem-Asian J 13:822–829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation (22178165, 21921006), the State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201902), the Natural Science Foundation of Jiangsu Province (BK20211262), and a project funded by the priority academic program development of Jiangsu higher education institutions (PAPD) of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Jiang or Rizhi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Liu, Y., Shao, Y. et al. Insights into Microstructure and Surface Properties of Pd/C for Liquid Phase Phenol Hydrogenation to Cyclohexanone. Catal Lett 153, 208–218 (2023). https://doi.org/10.1007/s10562-022-03973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03973-w

Keywords

Navigation