Skip to main content
Log in

Highly Active Cu(II) Diimine Catalyzed Click Reactions: A Mild Yet Fast Approach to Carbazole Substituted 1,2,3-Triazoles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two mild Cu(II) diimine catalyzed click reactions have been reported to be efficient, robust, and additive-free one-pot procedures to isolate carbazole decorated 1,2,3-triazoles with high regioselectivity. The Cu(II) diimine complex [(L)Cu(OAc)2(OH2)], where L = N-(2-pyridinylmethylene)-2,6-dibenzhydryl-4-methoxylamine, was synthesized and characterized. In the first method, the click reactions were demonstrated between 9-(2-propynyl)-carbazole and aryl azide using catalyst 1 at room temperature in water. In the second approach, the fast and convenient procedures to prepare carbazole decorated 1,2,3-triazoles were reported through the mechanical grinding method, which enabled the isolation of carbazole decorated 1,2,3-triazoles within 6:32 min. Besides, both the catalytic protocols were demonstrated without the addition of either external reductant or base. The structural details of carbazole decorated 1,2,3-triazoles were elucidated using single-crystal X-ray diffraction and NMR techniques.

Graphical Abstract

Two mild Cu(II) diimine catalyzed click reactions have been reported to be efficient, robust, and additive-free one-pot procedures to isolate carbazole decorated 1,2,3-triazole derivatives with high regioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Scheme 5

Similar content being viewed by others

References

  1. Meldal M, Tornøe CW (2008) Chem Rev 108:2952–3015

    Article  CAS  Google Scholar 

  2. Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302–1315

    Article  CAS  Google Scholar 

  3. Tornøe CV, Christensen C, Meldal M (2002) J Org Chem 67:3057–3064

    Article  Google Scholar 

  4. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  5. Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK (2021) Chem Rev 121:7638–7956

    Article  CAS  Google Scholar 

  6. Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137

    Article  CAS  Google Scholar 

  7. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  8. Finn MG, Fokin VV (2010) Chem Soc Rev 39:1231–1232

    Article  CAS  Google Scholar 

  9. Brotherton WS, Michaels HA, Simmons JT, Clark RJ, Dalal NS, Zhu L (2009) Org Lett 11:4954–4957

    Article  CAS  Google Scholar 

  10. Saikia AA, Rao RN, Das S, Jena S, Rej S, Maiti B, Chanda K (2020) Tet Lett 61:152273

    Article  CAS  Google Scholar 

  11. Husain AA, Bisht KS (2019) RSC Adv 9:10109–10116

    Article  CAS  Google Scholar 

  12. Abbaspour S, Keivanloo A, Bakherad M, Sepehri S (2018) Chem Biodivers 16:e1800410

    Google Scholar 

  13. Brassard CJ, Zhang X, Brewer CR, Liu P, Clark RJ, Zhu L (2016) J Org Chem 81:12091–12105

    Article  CAS  Google Scholar 

  14. Bai SQ, Jiang L, Zuo JL, Hor TSA (2013) Dalton Trans 42:11319–11326

    Article  CAS  Google Scholar 

  15. Kirai N, Yamamoto Y (2009) Eur J Org Chem 2009:1864–1867

    Article  Google Scholar 

  16. Liu P, Brassard CJ, Lee JP, Zhu L (2020) Chem Asian J 15:380–390

    Article  CAS  Google Scholar 

  17. Siemsen P, Livingston RC, Diederich F (2000) Angew Chem Int Ed 39:2632–2657

    Article  CAS  Google Scholar 

  18. Kuang G-C, Michaels HA, Simmons JT, Clark RJ, Zhu L (2010) J Org Chem 75:6540–6548

    Article  CAS  Google Scholar 

  19. Michaels HA, Zhu L (2011) Chem Asian J 6:2825–2834

    Article  CAS  Google Scholar 

  20. Rodionov VO, Presolski SI, Díaz DD, Fokin VV, Finn MG (2007) J Am Chem Soc 129:12705–12712

    Article  CAS  Google Scholar 

  21. Chan TR, Hilgraf R, Sharpless KB, Fokin VV (2004) Org Lett 6:2853–2855

    Article  CAS  Google Scholar 

  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  23. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) Acta Cryst A 71:59–75

    Article  CAS  Google Scholar 

  24. Duparc VH, Bano GL, Schaper F (2018) ACS Catal 8:7308–7325

    Article  Google Scholar 

  25. Lee S, Hirsch BE, Liu Y, Dobscha JR, Burke DW, Tait SL, Flood AH (2016) Chem Eur J 22:560–569

    Article  CAS  Google Scholar 

  26. Xue S, Qiu X, Ying S, Lu Y, Pan Y, Sun Q, Gu C, Yang W (2017) Adv Optical Mater 1700747:1–8

    Google Scholar 

  27. Leung M-K, Hsieh Y-H, Kuo T-Y, Chou R-T, Lee J-H, Chiu T-L, Chen H-J (2013) Org Lett 15:4694–4697

    Article  CAS  Google Scholar 

  28. Zhang Y, Tangadanchu VKR, Bheemanaboina RRV, Cheng Y, Zhou C-H (2018) Eur J Med Chem 155:579–589

    Article  CAS  Google Scholar 

  29. Tane S, Michinobu T (2021) Poly Int 70:432–436

    Article  CAS  Google Scholar 

  30. Iqbal S, Khan MA, Javaid K, Sadiq R, Fazal-ur-Rehman S, Choudhary MI, Basha FZ (2017) Bioorg Chem 74:72–81

    Article  CAS  Google Scholar 

  31. Worrell BT, Malik JA, Fokin VV (2013) Science 340(6131):457–460

    Article  CAS  Google Scholar 

  32. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Article  CAS  Google Scholar 

  33. Rodionov VO, Fokin VV, Finn MG (2005) Angew Chem Int Ed 44:2210–2215

    Article  CAS  Google Scholar 

  34. Bock VD, Hiemstra H, van Maarseveen JH (2006) Eur J Org Chem 2006:51–68

    Article  Google Scholar 

  35. Ayouchia HBI, Bahsis L, Anane H, Domingo LR, Stiriba S-E (2018) RSC Adv 8:7670–7678

    Article  Google Scholar 

  36. Spiteri C, Moses JE (2010) Angew Chem Int Ed 49:31–33

    Article  CAS  Google Scholar 

  37. Kuang G-C, Guha PM, Brotherton WS, Simmons JT, Stankee LA, Nguyen BT, Clark RJ, Zhu L (2011) J Am Chem Soc 133:13984–14001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the DST-SERB (EMR/2017/001211) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Prabusankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaivanan, S., Prabusankar, G. Highly Active Cu(II) Diimine Catalyzed Click Reactions: A Mild Yet Fast Approach to Carbazole Substituted 1,2,3-Triazoles. Catal Lett 153, 167–177 (2023). https://doi.org/10.1007/s10562-022-03971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03971-y

Keywords

Navigation