Skip to main content
Log in

Role of Benzene-1,3,5-Tricarboxylate Ligand in CuO–CeO2 Catalysts Derived from Metal–Organic Frameworks for Carbon Monoxide Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We prepared a CuO–CeO2–M catalyst, where M refers to MOFs, by calcinating a mixture of Cu–benzene-1,3,5-tricarboxylate (BTC) and Ce–(BTC), which was obtained through a process similar to co-precipitation under mild conditions. The catalyst exhibited good performance for CO oxidation and almost completely converted CO at 80 °C. However, CO conversion over a CuO–CeO2–C catalyst, where C refers to co-precipitation, prepared by co-precipitation was only 81% at 80 °C. To understand the reason for the difference in activity between the two catalysts and clarify the effect of BTC ligands on CuO–CeO2–M, we prepared CuO–CeO2–H1 and CuO–CeO2–H2 catalysts by adding various quantities of benzene-1,3,5-tricarboxylic acid (H3BTC) during the co-precipitation process. The catalytic activity was in the following order: CuO–CeO2–M > CuO–CeO2–H1/H2 > CuO–CeO2–C. There were three distinct copper species in the aforementioned catalysts: highly dispersed copper, copper doped into CeO2 lattices, and crystalline copper. For CuO–CeO2–M catalyst, the high content of Ce3+, Cu+, and surface-adsorbed oxygen was the cause for high activity. By adding H3BTC, the Cu+ content and dispersion of copper species in CuO–CeO2–H1/H2 was higher than that in CuO–CeO2–C. Accordingly, organic ligands can separate metal ions and prevent aggregation of oxides during calcination, which facilitates dispersion of copper species. In addition, CO can be released by thermal decomposition of organic ligands during calcination; CO is conducive to the formation of more Cu+ in the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feng Y, Wang L, Zhang Y, Guo Y, Guo Y, Lu G (2013) Chin J Catal 34:923–931

    Article  CAS  Google Scholar 

  2. Ye Q, Zhao J, Li D, Zhao J, Cheng S, Kang T (2011) Acta Phys -Chim Sin 27:169–176

    Article  CAS  Google Scholar 

  3. Han J, Kim HJ, Yoon S, Lee H (2011) J Mol Catal A: Chem 335:82–88

    Article  CAS  Google Scholar 

  4. Laguna OH, Sarria FR, Centeno MA, Odriozola JA (2010) J Catal 276:360–370

    Article  CAS  Google Scholar 

  5. Li S, Zhu H, Qin Z, Wang G, Zhang Y, Wu Z, Li Z, Chen G, Dong W, Wu Z, Zheng L, Zhang J, Hu T, Wang J (2014) Appl Catal B 144:498–506

    Article  CAS  Google Scholar 

  6. Liu W, Sarofim AF, Flytzani-Stephanopoulos M (1994) Appl Catal B 4:167–186

    Article  CAS  Google Scholar 

  7. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B Environ 230:18–28

    Article  CAS  Google Scholar 

  8. Papavasiliou J, Rawski M, Vakros J, Avgouropoulos G (2018) ChemCatChem 10:2096–2106

    Article  CAS  Google Scholar 

  9. Xie Y, Wu J, Jing G, Zhang H, Zeng S, Tian X, Zou X, Wen J, Su H, Zhong C-J, Cui P (2018) Appl Catal B 239:665–676

    Article  CAS  Google Scholar 

  10. Zhang F, Chen C, Xiao W, Xu L, Zhang N (2012) Catal Commun 26:25–29

    Article  Google Scholar 

  11. Li J-R, Sculley J, Zhou H-C (2012) Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  12. Qiu S, Xue M, Zhu G (2014) Chem Soc Rev 43:6116–6140

    Article  CAS  Google Scholar 

  13. Voorde BV, Bueken B, Denayer J, Vos DD (2014) Chem Soc Rev 43:5766–5788

    Article  Google Scholar 

  14. Dhakshinamoorthy A, Garcia H (2014) Chem Soc Rev 43:5750–5765

    Article  CAS  Google Scholar 

  15. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Chem Soc Rev 32:6011–6061

    Article  Google Scholar 

  16. Gu C, Qi R, Wei Y, Zhang X (2018) Reac Kinet Mech Cat 124:651–667

    Article  CAS  Google Scholar 

  17. Xu L, Chen C, Wang R, Luo JH, Liu YL, Zhang N (2013) Chem J Chin Univ 34:1907–1912

    CAS  Google Scholar 

  18. Zamaro JM, Pérez N, Miró E, Casado C, Seoane B, Téllez C, Coronas J (2012) Chem Eng J 195–196:180–187

    Article  Google Scholar 

  19. Zhu C, Ding T, Gao W, Ma K, Tian Y, Li X (2017) Int J Hydrog Energy 42:17457–17465

    Article  CAS  Google Scholar 

  20. Gong X, Wang W-W, Fu X-P, Wei S, Yu W-Z, Liu B, Jia C-J, Zhang J (2018) Fuel 229:217–226

    Article  CAS  Google Scholar 

  21. Wang Y, Yang Y, Liu N, Wang Y, Zhang X (2018) RSC Adv 8:33096–33102

    Article  CAS  Google Scholar 

  22. Guo Z, Song L, Xu T, Gao D, Li C, Hu X, Chen G (2019) Mater Chem Phys 226:338–343

    Article  CAS  Google Scholar 

  23. Chen C, Wang R, Shen P, Zhao D, Zhang N (2015) Int J Hydrog Energy 40:4830–4839

    Article  CAS  Google Scholar 

  24. Liu K, You H, Jia G, Zheng Y, Huang Y, Song Y, Yang M, Zhang L, Zhang H (2010) Cryst Growth Des 10:790–797

    Article  CAS  Google Scholar 

  25. Shan W, Shen W, Li C (2003) Chem Mater 15:4761–4767

    Article  CAS  Google Scholar 

  26. Qi L, Yu Q, Dai Y, Tang C, Liu L, Zhang H, Gao F, Dong L, Chen Y (2012) Appl Catal B 119–120:308–320

    Article  Google Scholar 

  27. Hossain ST, Azeeva E, Zhang K, Zell ET, Bernard DT, Balaz S, Wang R (2018) Appl Surf Sci 455:132–143

    Article  CAS  Google Scholar 

  28. Jia A-P, Hu G-S, Meng L, Xie Y-L, Lu J-Q, Luo M-F (2012) J Catal 289:199–209

    Article  CAS  Google Scholar 

  29. Chagas CA, Souza EF, Manfro RL, Landi SM, Souza MMVM, Schmal M (2016) Appl Catal B 182:257–265

    Article  CAS  Google Scholar 

  30. Cwele T, Mahadevaiah N, Singh S, Friedrich HB (2016) Appl Catal B 182:1–14

    Article  CAS  Google Scholar 

  31. Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063–4104

    Article  Google Scholar 

  32. Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys Rev B 64:245407

    Article  Google Scholar 

  33. Popović ZV, Dohčević-Mitrović Z, Cros A, Cantarero A (2007) J Phys Condens Matter 19:496209

    Article  Google Scholar 

  34. Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Appl Phys Lett 80:127–129

    Article  CAS  Google Scholar 

  35. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M (2018) Appl Catal B 230:18–28

    Article  CAS  Google Scholar 

  36. Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264–267

    Article  Google Scholar 

  37. Konsolakis M (2016) Appl Catal B 198:49–66

    Article  CAS  Google Scholar 

  38. Ali S, Chen L, Yuan F, Li R, Zhang T, Bakhtiar SUH, Leng X, Niu X, Zhu Y (2017) Appl Catal B 210:223–234

    Article  CAS  Google Scholar 

  39. Guo X, Zhou R (2017) J Power Sources 361:39–53

    Article  CAS  Google Scholar 

  40. Rzaczyńska Z, Ostasz A, Pikus S (2005) J Therm Anal Calorim 82:347–351

    Article  Google Scholar 

  41. Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z (2015) Catal Sci Technol 5:3166–3181

    Article  CAS  Google Scholar 

  42. Xu B, Zhang Q, Yuan S, Zhang M, Ohno T (2015) Chem Eng J 260:126–132

    Article  CAS  Google Scholar 

  43. Jampaiah D, Venkataswamy P, Coyle VE, Reddy BM, Bhargava SK (2016) RSC Adv 6:80541–80548

    Article  CAS  Google Scholar 

  44. Yang F, Wei J, Liu W, Guo J, Yang Y (2014) J Mater Chem 2:5662–5667

    Article  CAS  Google Scholar 

  45. Luo M-F, Ma J-M, Lu J-Q, Song Y-P, Wang Y-J (2007) J Catal 246:52–59

    Article  CAS  Google Scholar 

  46. Yuan Y, Wang Z, An H, Xue W, Wang Y (2015) Chinese J Catal 36:1142–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21776057, U20A20152). We thank Michael Scott Long, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimiao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Qu, M., Wang, Z. et al. Role of Benzene-1,3,5-Tricarboxylate Ligand in CuO–CeO2 Catalysts Derived from Metal–Organic Frameworks for Carbon Monoxide Oxidation. Catal Lett 153, 219–229 (2023). https://doi.org/10.1007/s10562-022-03970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03970-z

Keywords

Navigation