Skip to main content
Log in

Bisimidazolium Tungstate Ionic Liquids: Highly Efficient Catalysts for the Synthesis of Linear Organic Carbonates by the Reaction of Ethylene Carbonate with Alcohols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of bisimidazolium tungstate ionic liquids were synthesized and applied to catalyze the reaction of ethylene carbonate (EC) with alcohols. A detailed investigation was carried out on the relationship between catalyst structures and catalytic activities. The result showed that 1-butyl-3-methyl-bisimidazolium tungstate ([Bmim]2WO4) containing double C2–H in bisimidazolium and WO42− had more effectively catalytic performance than other bisimidazolium tungstate and conventional imidazolium salt (OAc, Cl, Br). Under the optimized conditions of 1:15 molar ratio of EC and ethanol, 5 mol% [Bmim]2WO4, 85 °C and 0.5 h, the yield of diethyl carbonate (DEC) was nearly 100%. The detailed DFT calculations and NMR spectroscopy indicated that the high catalytic activity of [Bmim]2WO4 was not only because the strong nucleophilic ability of WO42− could activate ethanol, but also the special structure of double C2–H in bisimidazolium could cooperatively activate EC. The reaction was catalyzed by synergistic effect in double C2–H and WO42− of [Bmim]2WO4. In addition, [Bmim]2WO4 could be used seven times without significant loss of catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3.
Fig. 11

Similar content being viewed by others

References

  1. Shaikh A, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  CAS  Google Scholar 

  2. Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benigin building block. Appl Catal A Gen 155:133–216

    Article  CAS  Google Scholar 

  3. Schffäner B, Schffäner F, Verevkin SP, Börner A (2010) Organic carbonates as colvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  Google Scholar 

  4. Dunn BC, Guenneau C, Hilton SA et al (2002) Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst. Energy Fuels 16:177–181

    Article  CAS  Google Scholar 

  5. Pacheco MA, Marshall CL (1996) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:2–29

    Article  Google Scholar 

  6. Delledonne D, Rivetti F, Romano U (2001) Development in the production and application of dimethylcarbonate. Appl Catal A Gen 221:241–251

    Article  CAS  Google Scholar 

  7. Peng W, Zhao N, Xiao F et al (2012) Recent progress in phosgene-free methods for synthesis of dimethyl carbonate. Pure Appl Chem 84:603–620

    Article  CAS  Google Scholar 

  8. Babad H, Zeiler AG (1973) The chemistry of phosgene. Chem Rev 73:75

    Article  CAS  Google Scholar 

  9. Wang C, Xu N, Liu T et al (2021) Mechanical pressure-mediated Pd active sites formation in NaY zeolite catalysts for indirect oxidative carbonylation of methanol to dimethyl carbonate. J Catal 396:269–280

    Article  CAS  Google Scholar 

  10. Romano U, Tesel R, Mauri MM, Rebora P (1980) Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds. Ind Eng Chem Res 19:396–403

    Article  CAS  Google Scholar 

  11. Shukla K, Srivastava VC (2017) Synthesis of organic carbonates from alcoholysis of urea: a review. Catal Rev 59:1–43

    Article  CAS  Google Scholar 

  12. Kothandaraman J, Dagle R, Dagle VL et al (2018) Condensed-phase low temperature heterogeneous hydrogenation of CO2 to methanol. Catal Sci Technol 8:5098–5103

    Article  CAS  Google Scholar 

  13. Yoshimura A, Watari R, Kuwata S, Kayaki Y (2019) Poly (ethyleneimine)-mediated consecutive hydrogenation of carbon dioxide to methanol with Ru catalysts. Eur J Inorg Chem 18:2375–2380

    Article  Google Scholar 

  14. Stoian D, Bansode A, Medina F, Urakawa A (2016) Catalysis under microscope: unraveling the mechanism of catalyst de- and re-activation in the continuous dimethyl carbonate synthesis from CO2 and methanol in the presence of a dehydrating agent. Catal Today 283:2–10

    Article  Google Scholar 

  15. Saada R, Kellici S, Heil T et al (2015) Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/graphene nanocomposite catalyst. Appl Catal B-Environ 168–169:353–362

    Article  Google Scholar 

  16. Fan B, Li H, Fan W et al (2010) Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Catal A Gen 372:94–102

    Article  CAS  Google Scholar 

  17. Honda M, Tamura M, Nakagawa Y et al (2014) Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J Catal 318:95–107

    Article  CAS  Google Scholar 

  18. Leino E, Mäki-Arvela P, Eränen K et al (2011) Enhanced yields of diethyl carbonate via one-pot synthesis from methanol, carbon dioxide and butylene oxide over cerium (IV) oxide. Chem Eng J 176–177:124–133

    Article  Google Scholar 

  19. Putro WS, Ikeda A, Shigeyasu S et al (2021) Sustainable catalytic synthesis of diethyl carbonate. Chem Sus Chem 14:842–846

    Article  CAS  Google Scholar 

  20. Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coording Chem Rev 153:155–174

    Article  CAS  Google Scholar 

  21. Vieiral OM, Monteirol WF, Neto BS et al (2018) Surface active ionic liquids as catalyst for CO2 conversion to propylene carbonate. Catal Lett 148:108–118

    Article  Google Scholar 

  22. Murugan C, Bajaj HC (2011) Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF/Al2O3 as an efficient solid base catalyst. Fuel Process Technol 92:77–82

    Article  CAS  Google Scholar 

  23. Eta V, Mäki-Arvela P, Salminen E et al (2011) The effect of alkoxide ionic liquids on the synthesis of dimethyl carbonate from CO2 and methanol over ZrO2-MgO. Catal Lett 141:1254–1261

    Article  CAS  Google Scholar 

  24. Li F, Wang L, Xu S et al (2021) Readily-fabricated supported MgO catalysts for efficient and green synthesis of diethyl carbonate from ethyl carbamate and ethanol. RSC Adv 25:14891–15496

    Google Scholar 

  25. Guo L, Zhao X, An H, Wang Y (2012) Catalysis by lead oxide for diethyl carbonate synthesis from ethyl carbamate and ethanol. Chin J Catal 33:595–600

    Article  CAS  Google Scholar 

  26. Wang D, Zhang X, Liu C et al (2015) Transition metal-modified mesoporous Mg-Al mixed oxides: stable base catalysts for the synthesis of diethyl carbonate from ethyl carbamate and ethanol. Appl Catal A Gen 505:478–486

    Article  CAS  Google Scholar 

  27. An H, Zhao X, Guo L et al (2012) Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst. Appl Catal A Gen 433–434:229–235

    Article  Google Scholar 

  28. Han MS, Lee BG, Ahn BS et al (2001) Kinetics of dimethyl carbonate synthesis from ethylene carbonate and methanol using alkali metal compounds as catalysts. React Kinet Catal Lett 73:33–38

    Article  CAS  Google Scholar 

  29. Sankar M, Nair CM, Murty KVGK, Manikandan P (2006) Transesterification of cyclic carbonates with methanol at ambient conditions over tungstate-based solid catalysts. Appl Catal A Gen 312:108–114

    Article  CAS  Google Scholar 

  30. Dhuri SM, Mahajani VV (2006) Studies in transesterification of ethylene carbonate to dimethyl carbonate over Amberlyst A-21 catalyst. J Chem Technol Biot 81:62–69

    Article  CAS  Google Scholar 

  31. Watanabe Y, Tatsumi T (1998) Hydrotalcite-type materials as catalysts for the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Micropor Mesopor Mat 22:399–407

    Article  CAS  Google Scholar 

  32. Stoica G, Abelló S, Pérez-Ramírez J (2009) Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonite. Chemsuschem 4:301–304

    Article  Google Scholar 

  33. Fujita S, Bhanage BM, Aoki D et al (2006) Mesoporous smectites incorporated with alkali metal cations as solid base catalysts. Appl Catal A Gen 313:151–159

    Article  CAS  Google Scholar 

  34. Jagtap SR, Bhor MD, Bhanage BM (2008) Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Catal Commun 9:1928–1931

    Article  CAS  Google Scholar 

  35. Ju H, Manju MD, Park D et al (2007) Performance of ionic liquid as catalysts in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. React Kinet Catal 90:3–9

    Article  CAS  Google Scholar 

  36. Kim D, Kim C, Koh J, Park D (2010) Synthesis of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquid on a morphoussilica. J Ind Eng Chem 16:474–478

    Article  CAS  Google Scholar 

  37. Wang J, Sun J, Cheng W, Shi C (2012) Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal Sci Technol 3:600–605

    Article  Google Scholar 

  38. Yang Z, He L, Dou X, Chanfreau S (2010) Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Lett 51:2931–2934

    Article  CAS  Google Scholar 

  39. Song Y, He X, Yu B et al (2020) Protic ionic liquid-promoted synthesis of dimethyl carbonate from ethylene carbonate and methanol. Chinese Chem Lett 31:667–672

    Article  CAS  Google Scholar 

  40. Wu S, Wang B, Zhang Y et al (2016) Phenolic hydroxyl-functionalized imidazolium ionic liquids: Highly efficient catalysts for the fixation of CO2 to cyclic carbonates. J Mol Catal A-Chem 418–419:1–8

    Google Scholar 

  41. Wu S, Zhang Y, Wang B et al (2017) Synthesis of functionalized cyclic carbonates by one-pot reactions of carbon dioxide, epibromohydrin, and phenols, thiophenols or carboxylic acids catalyzed by ionic liquids. Eur J Org Chem 3:753–759

    Article  Google Scholar 

  42. Kresse G, Hafner J (1993) Ab initio molecular-dynamics for liquid-metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  43. Kresse G, Hafner J (1993) Ab-Initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48:13115–13118

    Article  CAS  Google Scholar 

  44. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  45. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  46. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  CAS  Google Scholar 

  47. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078

    Article  CAS  Google Scholar 

  48. Xu J, Wu H, Ma C et al (2013) Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification. Appl Catal A-Gen 464–465:357–363

    Article  Google Scholar 

  49. Kim D, Lim D, Cho D et al (2011) Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41. Catal Today 164:556–560

    Article  CAS  Google Scholar 

  50. Tian J, Miao C, Wang J et al (2007) Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem 9:566–571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (22169017), Applied Basic Research Program of Shangrao City (2021F001) and Project of Shangrao Normal University (202130) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3268 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Huang, J., Wang, Y. et al. Bisimidazolium Tungstate Ionic Liquids: Highly Efficient Catalysts for the Synthesis of Linear Organic Carbonates by the Reaction of Ethylene Carbonate with Alcohols. Catal Lett 153, 62–73 (2023). https://doi.org/10.1007/s10562-022-03969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03969-6

Keywords

Navigation