Skip to main content
Log in

Specific Features of the In Situ Formation of an Unsupported NiWS Nanosize Catalyst from Oil-Soluble Precursors

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper describes the specific features of the formation of an unsupported nickel-tungsten sulfide nanosize catalyst in situ in a hydrocarbon feedstock from oil-soluble precursors—nickel and tungsten compounds in the presence of elemental sulfur additive. The catalysts formed at different times of the catalytic experiment (2, 5, 7 and 10 h) were analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy. According to STEM-EDX elemental spectra, the formation of tungsten and nickel sulfides was established, with a further increase in the amount of active Ni-W-S phase on the surface of the crystalline nickel sulfide. It was found that the time of catalyst formation affects its morphology and phase composition. Evaluation of the hydrogenating catalytic activity confirms that an increase in the time of catalyst formation leads to an increase in its activity, which is associated with the peculiarities of the morphology of sulfide particle aggregates as well as an increase in the degree of promotion of tungsten disulfide crystallites by nickel atoms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso-Ramírez G, Cuevas-García R, Sánchez-Minero F, Ramírez J, Moreno-Montiel M, Silva-Oliver G, Ancheyta J, Carbajal-Vielman R (2021) Catalytic hydrocracking of a Mexican heavy oil on a MoS2/al2o3catalyst: II. Study of the transformation of isolated aromatics fraction obtained from SARA analysis. Fuel 288:119541. https://doi.org/10.1016/j.fuel.2020.119541

    Article  CAS  Google Scholar 

  2. Morel F, Kressmann S, Harlé V, Kasztelan S (1997) Processes and catalysts for hydrocracking of heavy oil and residues. In: Froment GF, Delmon B, Grange P (eds) Studies in surface science and catalysis, vol 106. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/S0167-2991(97)80003-1

    Chapter  Google Scholar 

  3. Kang KH, Nguyen NT, Seo PW, Seo H, Kim GT, Kang N, Lee CW, Han SJ, Chung M-C, Park S (2020) Slurry-phase hydrocracking of heavy oil over Mo precursors: effect of triphenylphosphine ligands. J Catal 384:106–121. https://doi.org/10.1016/j.jcat.2020.02.007

    Article  CAS  Google Scholar 

  4. Kuchinskaya T, Kniazeva M, Samoilov V, Maximov A (2020) In situ generated nanosized sulfide Ni-W catalysts based on zeolite for the hydrocracking of the pyrolysis fuel oil into the BTX fraction. Open Access 10(10):1152

    CAS  Google Scholar 

  5. Villasana Y, Méndez FJ, Luis-Luis M, Brito JL (2019) Pollutant reduction and catalytic upgrading of a Venezuelan extra-heavy crude oil with Al2O3-supported NiW catalysts: effect of carburization, nitridation and sulfurization. Fuel 235:577–588. https://doi.org/10.1016/j.fuel.2018.08.047

    Article  CAS  Google Scholar 

  6. Shan S, Yuan P, Han W, Shi G, Bao X (2015) Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. J Catal 330:288–301. https://doi.org/10.1016/j.jcat.2015.06.019

    Article  CAS  Google Scholar 

  7. Chianelli RR, Berhault G, Torres B (2009) Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal Today 147(3):275–286. https://doi.org/10.1016/j.cattod.2008.09.041

    Article  CAS  Google Scholar 

  8. Le Z, Afanasiev P, Li D, Long X, Vrinat M (2008) Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts. Catal Today 130(1):24–31. https://doi.org/10.1016/j.cattod.2007.07.002

    Article  CAS  Google Scholar 

  9. Alkhaldi S, Husein MM (2014) Hydrocracking of heavy oil by means of in situ prepared ultradispersed nickel nanocatalyst. Energy Fuels 28(1):643–649. https://doi.org/10.1021/ef401751s

    Article  CAS  Google Scholar 

  10. Hur YG, Lee D-W, Lee K-Y (2016) Hydrocracking of vacuum residue using NiWS(x) dispersed catalysts. Fuel 185:794–803. https://doi.org/10.1016/j.fuel.2016.08.027

    Article  CAS  Google Scholar 

  11. Guisnet M, Gilson J-P (2005) Zeolites for cleaner technologies. Imperial College Press, London

    Google Scholar 

  12. Eijsbouts S, Mayo SW, Fujita K (2007) Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl Catal A 322:58–66. https://doi.org/10.1016/j.apcata.2007.01.008

    Article  CAS  Google Scholar 

  13. Besenbacher F, Brorson M, Clausen BS, Helveg S, Hinnemann B, Kibsgaard J, Lauritsen JV, Moses PG, Nørskov JK, Topsøe H (2008) Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catal Today 130(1):86–96. https://doi.org/10.1016/j.cattod.2007.08.009

    Article  CAS  Google Scholar 

  14. Lacroix M, Vrinat M, Breysse M (1986) Unsupported nickel tungsten sulfide catalysts: Part 1: catalytic behaviour in hydrogenation and hydrodesulfurization reactions. Appl Catal 21(1):73–83. https://doi.org/10.1016/S0166-9834(00)81329-9

    Article  CAS  Google Scholar 

  15. Zheng P, Li T, Chi K, Xiao C, Fan J, Wang X, Duan A (2019) DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl Catal B 257:117937. https://doi.org/10.1016/j.apcatb.2019.117937

    Article  CAS  Google Scholar 

  16. Topsøe H, Clausen BS, Candia R, Wivel C, Mørup S (1981) In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: evidence for and nature of a CoMoS phase. J Catal 68(2):433–452. https://doi.org/10.1016/0021-9517(81)90114-7

    Article  Google Scholar 

  17. Topsøe H (2007) The role of Co–Mo–S type structures in hydrotreating catalysts. Appl Catal A 322:3–8. https://doi.org/10.1016/j.apcata.2007.01.002

    Article  CAS  Google Scholar 

  18. Spojakina A, Palcheva R, Jiratova K, Tyuliev G, Petrov L (2005) Synergism between Ni and W in the Niw/ γ-Al2O3 hydrotreating catalysts. Catal Lett 104(1):45–52. https://doi.org/10.1007/s10562-005-7434-1

    Article  CAS  Google Scholar 

  19. Van Der Meer Y, Vissenberg MJ, De Beer VHJ, Van Veen JAR, Van Der Kraan AM (2002) Characterization of carbon- and alumina-supported NiW and CoW sulfided catalysts. In: Cook DC, Hoy GR (eds) Industrial applications of the Mössbauer effect. Springer, Dordrecht, pp 51–57

    Chapter  Google Scholar 

  20. Hensen EJM, van der Meer Y, van Veen JAR, Niemantsverdriet JW (2007) Insight into the formation of the active phases in supported NiW hydrotreating catalysts. Appl Catal A 322:16–32. https://doi.org/10.1016/j.apcata.2007.01.003

    Article  CAS  Google Scholar 

  21. Zhang L, Afanasiev P, Li D, Long X, Vrinat M (2007) Solution synthesis of unsupported Ni–W–S hydrotreating catalysts. Catal Commun 8(12):2232–2237. https://doi.org/10.1016/j.catcom.2007.05.001

    Article  CAS  Google Scholar 

  22. Vutolkina AV, Baygildin IG, Glotov AP, Cherednichenko KA, Maksimov AL, Karakhanov EA (2021) Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under Water gas shift conditions. Appl Catal B 282:119616. https://doi.org/10.1016/j.apcatb.2020.119616

    Article  CAS  Google Scholar 

  23. Le Z, Afanasiev P, Li D, Shi Y, Vrinat M (2008) Synthesis of unsupported Ni–W–S hydrotreating catalysts from the oxothiosalt (NH4)2WO2S2. C R Chim 11(1):130–136. https://doi.org/10.1016/j.crci.2007.04.012

    Article  CAS  Google Scholar 

  24. Zuo D, Vrinat M, Nie H, Maugé F, Shi Y, Lacroix M, Li D (2004) The formation of the active phases in sulfided NiW/Al2O3 catalysts and their evolution during post-reduction treatment. Catal Today 93–95:751–760. https://doi.org/10.1016/j.cattod.2004.06.078

    Article  CAS  Google Scholar 

  25. Eijsbouts S, Li X, Bergwerff J, Louwen J, Woning L, Loos J (2017) Nickel sulfide crystals in Ni-Mo and Ni-W catalysts: eye-catching inactive feature or an active phase in its own right? Catal Today 292:38–50. https://doi.org/10.1016/j.cattod.2016.08.028

    Article  CAS  Google Scholar 

  26. Olivas A, Avalos M, Fuentes S (2000) Evolution of crystalline phases in nickel–tungsten sulfide catalysts. Mater Lett 43(1):1–5. https://doi.org/10.1016/S0167-577X(99)00218-9

    Article  CAS  Google Scholar 

  27. Kasztelan S, Toulhoat H, Grimblot J, Bonnelle JP (1984) A geometrical model of the active phase of hydrotreating catalysts. Appl Catal 13(1):127–159. https://doi.org/10.1016/S0166-9834(00)83333-3

    Article  CAS  Google Scholar 

  28. Hassanzadeh H, Abedi J (2010) Modelling and parameter estimation of ultra-dispersed in situ catalytic upgrading experiments in a batch reactor. Fuel 89(10):2822–2828. https://doi.org/10.1016/j.fuel.2010.02.012

    Article  CAS  Google Scholar 

  29. Daage M, Chianelli RR (1994) Structure-function relations in molybdenum sulfide catalysts: the “Rim-Edge” model. J Catal 149(2):414–427. https://doi.org/10.1006/jcat.1994.1308

    Article  CAS  Google Scholar 

  30. Stanislaus A, Cooper BH (1994) Aromatic hydrogenation catalysis: a review. Catal Rev 36(1):75–123. https://doi.org/10.1080/01614949408013921

    Article  CAS  Google Scholar 

  31. Woolfolk LG, Geantet C, Massin L, Laurenti D, De los Reyes JA (2017) Solvent effect over the promoter addition for a supported NiWS hydrotreating catalyst. Appl Catal B 201:331–338. https://doi.org/10.1016/j.apcatb.2016.07.052

    Article  CAS  Google Scholar 

  32. Díaz de León JN, Picquart M, Massin L, Vrinat M, de los Reyes JA (2012) Hydrodesulfurization of sulfur refractory compounds: effect of gallium as an additive in NiWS/γ-Al2O3 catalysts. J Mol Catal A: Chem 363–364:311–321. https://doi.org/10.1016/j.molcata.2012.07.006

    Article  CAS  Google Scholar 

  33. Breysse M, Cattenot M, Decamp T, Frety R, Gachet C, Lacroix M, Leclercq C, de Mourgues L, Portefaix JL, Vrinat M, Houari M, Grimblot J, Kasztelan S, Bonnelle JP, Housni S, Bachelier J, Duchet JC (1988) Influence of sulphidation conditions on the properties of NiW/Al2O3 hydrotreating catalysts. Catal Today 4(1):39–55. https://doi.org/10.1016/0920-5861(88)87045-7

    Article  CAS  Google Scholar 

  34. Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 87(7):1195–1206. https://doi.org/10.1016/j.fuel.2007.07.020

    Article  CAS  Google Scholar 

  35. Pawelec B, Mariscal R, Fierro JLG, Greenwood A, Vasudevan PT (2001) Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Appl Catal A 206(2):295–307. https://doi.org/10.1016/S0926-860X(00)00605-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed within the framework of the State Assignment of the Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

TSK: Supervision, Project administration, Conceptualization, Investigation, Methodology, Writing—review & editing, Writing-original draft, Visualization., MIK: Conceptualization, Writing -original draft, Writing—review & editing, ALM: Supervision, Conceptualization.

Corresponding author

Correspondence to T. S. Kuchinskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskaya, T.S., Knyazeva, M.I. & Maximov, A.L. Specific Features of the In Situ Formation of an Unsupported NiWS Nanosize Catalyst from Oil-Soluble Precursors. Catal Lett 153, 198–207 (2023). https://doi.org/10.1007/s10562-022-03966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03966-9

Keywords

Navigation