Skip to main content
Log in

Kinetic Parameter Estimation for Catalytic H2–D2 Exchange on Pd

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Kinetic parameters have been estimated for the H2–D2 exchange reaction on a thin film Pd catalyst by fitting reaction data from T = 333 to 593 K over a range of inlet partial pressures, \({P}_{{H}_{2}}^{in}\) and \({P}_{{D}_{2}}^{in}\). A rigorous approach to estimating the 95% confidence regions of the kinetic parameters reveals some of the issues and complexities that are not routinely considered in the estimation of kinetic parameter uncertainty from catalytic data. Three different mechanistic models were used to assess the influence of subsurface hydrogen, H′: the traditional Langmuir–Hinshelwood (LH) mechanism, the Single Subsurface Hydrogen (1H′) mechanism, and the Dual Subsurface Hydrogen (2H′) mechanism. The fitting was performed by fixing the pre-exponential factors for all Arrhenius rate constants and equilibrium constants to their transition state theory values. The diffusion of H and D atoms from the surface into the subsurface was constrained to be endothermic (i.e. \(\Delta {E}_{ss}\) > 0) and represented as an equilibrium process. Performance of the fitting routine was evaluated on a noiseless simulated dataset (created using \(\Delta {E}_{ads}^{\ddagger }\) = 0, \(\Delta {E}_{des}^{\ddagger }\) = 43, and \(\Delta {E}_{ss}\) = 25 kJ/mol) and the same simulated dataset with the inclusion of 3% Gaussian noise. In both cases, the solver was able to return the chosen values of \(\Delta {E}_{ads}^{\ddagger }\), \(\Delta {E}_{des}^{\ddagger }\), and \(\Delta {E}_{ss}\). Mapping of the behavior of the residual sum of squared errors, \({\chi }^{2}\), about its global minimum within 3D (\({\epsilon }_{ads}\), \({\epsilon }_{des}\), \({\epsilon }_{ss}\)) parameter space allowed quantification and visualization of the 95% confidence regions using 2D error ellipses for each pair of fitting parameters. For the experimental dataset on the Pd catalyst, fitting to the LH model predicted that H2–D2 exchange is adsorption rate limited, with \(\Delta {E}_{ads}^{\ddagger }\) = 51.1 ± 0.6 kJ/mol with 95% confidence. On the other hand, fitting to both the 1H′ and 2H′ models led to predictions of \(\Delta {E}_{ads}^{\ddagger }\) = 0, consistent with the current understanding that the barrier to H2 dissociation on Pd is low. Thus, the results detailed herein provide supporting evidence for a non-LH mechanism for H2–D2 exchange on Pd while also illustrating the issues associated with quantification of uncertainty in kinetic parameter estimation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Nørskov JK (2003) High throughput experimental and theoretical predictive screening of materials—a comparative study of search strategies for new fuel cell anode catalysts. J Phys Chem B. https://doi.org/10.1021/jp030508z

    Article  Google Scholar 

  2. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science. https://doi.org/10.1126/science.280.5370.1735

    Article  Google Scholar 

  3. Smotkin ES, Jiang J, Nayar A, Liu R (2006) High-throughput screening of fuel cell electrocatalysts. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2005.08.115

    Article  Google Scholar 

  4. Satyapal S (2015) DOE hydrogen and fuel cells program, FY2015 annual progress report. DOE Hydrog. Fuel Cells Program, FY2015 Annu. Prog. Report, Introd

  5. Gmeiner J, Seibicke M, Behrens S, Spliethoff B, Trapp O (2016) Investigation of the hydrogenation of 5-methylfurfural by noble metal nanoparticles in a microcapillary reactor. Chemsuschem. https://doi.org/10.1002/cssc.201600045

    Article  Google Scholar 

  6. Shevlin M, Friedfeld MR, Sheng H, Pierson NA, Hoyt JM, Campeau LC, Chirik PJ (2016) Nickel-catalyzed asymmetric alkene hydrogenation of α, β-unsaturated esters: high-throughput experimentation-enabled reaction discovery, optimization, and mechanistic elucidation. J Am Chem Soc. https://doi.org/10.1021/jacs.6b00519

    Article  Google Scholar 

  7. Pizzi R, van Putten RJ, Brust H, Perathoner S, Centi G, van der Waal JC (2015) High-throughput screening of heterogeneous catalysts for the conversion of furfural to bio-based fuel components. Catalysts. https://doi.org/10.3390/catal5042244

    Article  Google Scholar 

  8. Gmeiner J, Behrens S, Spliethoff B, Trapp O (2016) Ruthenium nanoparticles in high-throughput studies of chemoselective carbonyl hydrogenation reactions. ChemCatChem. https://doi.org/10.1002/cctc.201501069

    Article  Google Scholar 

  9. Adhikari S, Fernando S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res. https://doi.org/10.1021/ie050644l

    Article  Google Scholar 

  10. Lanning BR, Ishteiwy O, Way JD, Edlund D, Coulter K (2009) Un-Supported palladium alloy membranes for the production of hydrogen. Inorganic Membranes Energy Environ Appl. https://doi.org/10.1007/978-0-387-34526-0_11

    Article  Google Scholar 

  11. Paglieri SN, Way JD (2002) Innovations in palladium membrane research. Sep Purif Methods. https://doi.org/10.1081/SPM-120006115

    Article  Google Scholar 

  12. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature. https://doi.org/10.1038/376238a0

    Article  Google Scholar 

  13. Aasberg-Petersen K, Nielsen CS, Lægsgaard Jørgensen S (1998) Membrane reforming for hydrogen. Catal Today. https://doi.org/10.1016/S0920-5861(98)00341-1

    Article  Google Scholar 

  14. deRosset AJ (1960) Diffusion of hydrogen through palladium membranes. Ind Eng Chem. https://doi.org/10.1021/ie50606a035

    Article  Google Scholar 

  15. Sinfelt JH, Catal CJ, Catal, AE (1987) Bimetallic catalysts: discoveries, concepts, and applications

  16. Wei T, Wang J, Goodman DW (2007) Characterization and chemical properties of Pd-Au alloy surfaces. J Phys Chem C. https://doi.org/10.1021/jp067177l

    Article  Google Scholar 

  17. Lewis FA (1995) The palladium-hydrogen system: structures near phase transition and critical points. Int J Hydrogen Energy. https://doi.org/10.1016/0360-3199(94)00113-E

    Article  Google Scholar 

  18. Jayaraman V, Lin YS (1995) Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. J Memb Sci. https://doi.org/10.1016/0376-7388(95)00040-J

    Article  Google Scholar 

  19. Shu J, Grandjean BPA, Neste A, Van Kaliaguine S (1991) Catalytic palladium-based membrane reactors: a review. Can J Chem Eng. https://doi.org/10.1002/cjce.5450690503

    Article  Google Scholar 

  20. Rogers HC (1968) Hydrogen embrittlement of metals: atomic hydrogen from a variety of sources reduces the ductility of many metals. Science. https://doi.org/10.1126/science.159.3819.1057

    Article  Google Scholar 

  21. OBrien CP, Miller JB, Morreale BD, Gellman AJ (2011) The kinetics of H 2-D 2 exchange over Pd, Cu, and PdCu surfaces. J Phys Chem. https://doi.org/10.1021/jp2076885

    Article  Google Scholar 

  22. O’Brien CP, Miller JB, Morreale BD, Gellman AJ (2012) H2–D2 exchange kinetics in the presence of H2S over Pd4S, Pd70Cu30, and Pd47Cu53 surfaces. J Phys Chem C. https://doi.org/10.1021/jp305024b

    Article  Google Scholar 

  23. Lewis FA (1982) Palladium-hydrogen system - 2. Platin Met Rev

  24. Uemiya S, Matsuda T, Kikuchi E (1991) Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. J Memb Sci. https://doi.org/10.1016/S0376-7388(00)83041-0

    Article  Google Scholar 

  25. Hurlbert RC, Konecny JO (1961) Diffusion of hydrogen through palladium. J Chem Phys. https://doi.org/10.1063/1.1701003

    Article  Google Scholar 

  26. Jewett DN, Makrides AC (1965) Diffusion of hydrogen through palladium and palladium-silver alloys. Trans Faraday Soc. https://doi.org/10.1039/tf9656100932

    Article  Google Scholar 

  27. Pyun S, Lee WT, Yang TH (1997) Hydrogen diffusion through palladium-gold alloy coatings electrodeposited on palladium substrate under permeable boundary condition. Thin Solid Films. https://doi.org/10.1016/S0040-6090(97)00458-6

    Article  Google Scholar 

  28. Conrad H, Ertl G, Latta EE (1974) Adsorption of hydrogen on palladium single crystal surfaces. Surf Sci. https://doi.org/10.1016/0039-6028(74)90060-0

    Article  Google Scholar 

  29. Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf Sci. https://doi.org/10.1016/j.susc.2011.12.017

    Article  Google Scholar 

  30. Herron JA, Tonelli S, Mavrikakis M (2012) Atomic and molecular adsorption on Pd(111). Surf Sci. https://doi.org/10.1016/j.susc.2012.07.003

    Article  Google Scholar 

  31. Ludwig W, Savara A, Madix RJ, Schauermann S, Freund HJ (2012) Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon. J Phys Chem C. https://doi.org/10.1021/jp209033s

    Article  Google Scholar 

  32. Savara A, Ludwig W, Schauermann S (2013) Kinetic evidence for a non-langmuir-hinshelwood surface reaction: H/D exchange over Pd nanoparticles and Pd(111). ChemPhysChem. https://doi.org/10.1002/cphc.201300179

    Article  Google Scholar 

  33. Sen I, Gellman AJ (2018) Kinetic fingerprints of catalysis by subsurface hydrogen. ACS Catal. https://doi.org/10.1021/acscatal.8b02168

    Article  Google Scholar 

  34. Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science. https://doi.org/10.1126/science.1155200

    Article  Google Scholar 

  35. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal Lett. https://doi.org/10.1007/s10562-006-0041-y

    Article  Google Scholar 

  36. Greeley J, Mavrikakis M (2005) Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. J Phys Chem B. https://doi.org/10.1021/jp046540q

    Article  Google Scholar 

  37. Mei D, Neurock M, Smith CM (2009) Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: first-principles-based kinetic monte carlo simulations. J Catal. https://doi.org/10.1016/j.jcat.2009.09.004

    Article  Google Scholar 

  38. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew Chemie - Int Ed. https://doi.org/10.1002/anie.200802844

    Article  Google Scholar 

  39. Christmann K (1988) Interaction of hydrogen with solid surfaces. Surf Sci Rep. https://doi.org/10.1016/0167-5729(88)90009-X

    Article  Google Scholar 

  40. Kondratyuk P, Gumuslu G, Shukla S, Miller JB, Morreale BD, Gellman AJ (2013) A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science. J Catal. https://doi.org/10.1016/j.jcat.2012.12.015

    Article  Google Scholar 

  41. Fleutot B, Miller JB, Gellman AJ (2012) Apparatus for deposition of composition spread alloy films: the rotatable shadow mask. J Vac Sci Technol A Vacuum Surfaces Film. https://doi.org/10.1116/1.4766194

    Article  Google Scholar 

  42. Catalytic Reaction Engineering. Stud Surf Sci Catal 1993 79(C): 251–306. https://doi.org/10.1016/S0167-2991(08)63811-2.

  43. Dumesic JA (1993) The microkinetics of heterogeneous catalysis. ACS Prof Ref B

  44. Wang B, Shi W, Miao Z (2015) Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space. PLoS ONE. https://doi.org/10.1371/journal.pone.0118537

    Article  Google Scholar 

  45. Behm RJ, Christmann K, Ertl G (1980) Adsorption of hydrogen on Pd(100). Surf Sci 99(2):320–340. https://doi.org/10.1016/0039-6028(80)90396-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this work from the National Science Foundation through grant number CHE1954340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Gellman.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golio, N., Sen, I., Guo, Z. et al. Kinetic Parameter Estimation for Catalytic H2–D2 Exchange on Pd. Catal Lett 153, 1–18 (2023). https://doi.org/10.1007/s10562-022-03961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03961-0

Keywords

Navigation