Skip to main content
Log in

A Numerical Prediction of 4th-Order Kinetics for Photocatalytic Oxygen Evolution Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Multiple-step mechanisms have been extensively proposed in many electrocatalytic and/or photocatalytic oxygen evolution reactions. But the surface charge reaction is less studied quantitatively. More difficultly, the verification methods for new multiple-step photocatalytic reactions are rarely found, which could be one of the main reasons for the insufficient reaction mechanism study. In this work, we aim to elucidate the rate-law relationship of the multiple-charge reactions, which is derived based on the microkinetics calculation on the photophysical redox reactions using pre-equilibrium approximation and steady-state approximation. The numerical analysis demonstrates that an nth-order feature could be observed when the nth-step is a rate-determined step in a multiple-step reaction. Likely, the 4th-order charge transfer could be possibly found for oxygen evolution reaction, suggesting the analytical methods and results could further boost the fundamental studies in photocatalysts and multiple-step reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due financial support, but are available from the corresponding author on reasonable request.

References

  1. Zhang JZ, Reisner E (2019) Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat Rev Chem 4:6–21

    Article  Google Scholar 

  2. Dogutan DK, Nocera DG (2019) Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc Chem Res 52:3143–3148

    Article  CAS  Google Scholar 

  3. Hu CL, Zhang L, Gong JL (2019) Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci 12:2620–2645

    Article  CAS  Google Scholar 

  4. Ye S, Ding C, Liu M, Wang A, Huang Q, Li C (2019) Water oxidation catalysts for artificial photosynthesis. Adv Mater 31:e1902069

    Article  Google Scholar 

  5. Liao G, Gong Y, Zhang L, Gao H, Yang G-J, Fang B (2019) Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci 12:2080–2147

    Article  CAS  Google Scholar 

  6. Li X, Yu J, Jaroniec M, Chen X (2019) Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev 119:3962–4179

    Article  CAS  Google Scholar 

  7. Zhang N, Long R, Gao C, Xiong YJ (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61:771–805

    Article  CAS  Google Scholar 

  8. Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S (2020) Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J Am Chem Soc 142:5709–5721

    Article  CAS  Google Scholar 

  9. Singh AR, Rohr BA, Statt MJ, Schwalbe JA, Cargnello M, Norskov JK (2019) Strategies toward selective electrochemical ammonia synthesis. ACS Catal 9:8316–8324

    Article  CAS  Google Scholar 

  10. Pannwitz A, Wenger OS (2019) Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun 55:4004–4014

    Article  CAS  Google Scholar 

  11. Liu C, Colon BC, Ziesack M, Silver PA, Nocera DG (2016) Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210–1213

    Article  CAS  Google Scholar 

  12. Lewis NS (2016) Research opportunities to advance solar energy utilization. Science 351:aad1920

    Article  Google Scholar 

  13. Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh CT, De Luna P, Yu Z, Rasouli AS, Brodersen P, Sun S, Voznyy O, Tan CS, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo SC, Ip A, Ulissi Z, Sargent EH (2020) Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581:178–183

    Article  CAS  Google Scholar 

  14. Tayvah UT, Neu J, Spies JA, Schmuttenmaer CA, Brudvig GW (2020) Ultrafast terahertz spectroscopy provides insight into charge transfer efficiency and dynamics in artificial photosynthesis. Photosynth Res. https://doi.org/10.1007/s11120-11020-00798-11129

    Article  Google Scholar 

  15. Buzzetti L, Crisenza GEM, Melchiorre P (2019) Mechanistic studies in photocatalysis. Angew Chem Int Ed Engl 58:3730–3747

    Article  CAS  Google Scholar 

  16. Ng KH, Lai SY, Cheng CK, Cheng YW, Chong CC (2021) Photocatalytic water splitting for solving energy crisis: myth, fact or busted? Chem Eng J 417:128847

    Article  CAS  Google Scholar 

  17. Yang XG, Wang YX, Li CM, Wang DW (2021) Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res 14:3446–3457

    Article  CAS  Google Scholar 

  18. Xie C, Yan DF, Chen W, Zou YQ, Chen R, Zang SQ, Wang YY, Yao XD, Wang SY (2019) Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today 31:47–68

    Article  CAS  Google Scholar 

  19. Song J, Wei C, Huang ZF, Liu C, Zeng L, Wang X, Xu ZJ (2020) A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev 49:2196–2214

    Article  CAS  Google Scholar 

  20. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Norskov JK (2016) Materials for solar fuels and chemicals. Nat Mater 16:70–81

    Article  Google Scholar 

  21. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998

    Article  Google Scholar 

  22. Mesa CA, Francas L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Gratzel M, Batista VS, Durrant JR (2020) Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 12:82–89

    Article  CAS  Google Scholar 

  23. Yang XG, Wang DW (2018) Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693

    Article  CAS  Google Scholar 

  24. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    Article  CAS  Google Scholar 

  25. Gagliardi CJ, Westlake BC, Kent CA, Paul JJ, Papanikolas JM, Meyer TJ (2010) Integrating proton coupled electron transfer (PCET) and excited states. Coord Chem Rev 254:2459–2471

    Article  CAS  Google Scholar 

  26. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    Article  CAS  Google Scholar 

  27. Zhang S, Leng W (2020) Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat Chem 12:1097–1098

    Article  CAS  Google Scholar 

  28. Mesa CA, Rao RR, Francas L, Corby S, Durrant JR (2020) Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat Chem 12:1099–1101

    Article  CAS  Google Scholar 

  29. Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spori C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Perez-Ramirez J, Cuenya BR, Schlogl R, Strasser P, Teschner D, Jones TE (2020) Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587:408–413

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J (2018) Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J Am Chem Soc 140:3264–3269

    Article  CAS  Google Scholar 

  31. Li J, Wan W, Triana CA, Chen H, Zhao Y, Mavrokefalos CK, Patzke GR (2021) Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat Commun 12:255

    Article  CAS  Google Scholar 

  32. Chatman S, Zarzycki P, Rosso KM (2015) Spontaneous water oxidation at hematite (a-Fe2O3) crystal faces. ACS Appl Mater Interfaces 7:1550–1559

    Article  CAS  Google Scholar 

  33. Zhang JM, Tao HB, Kuang M, Yang HB, Cai WZ, Yan QY, Mao Q, Liu B (2020) Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal 10:8597–8610

    Article  CAS  Google Scholar 

  34. Fabbri E, Schmidt TJ (2018) Oxygen evolution reaction—the enigma in water electrolysis. ACS Catal 8:9765–9774

    Article  CAS  Google Scholar 

  35. Espenson JH (1995) Chemical kinetics and reaction mechanisms, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  36. Atkins P, Paula Jd (2005) Atkins’ physical chemistry, 8th edn. W. H. Freeman and Company, New York

    Google Scholar 

  37. Rae M, Berberan-Santos MN (2004) A generalized pre-equilibrium approximation in chemical and photophysical kinetics. J Chem Educ 81:436–440

    Article  CAS  Google Scholar 

  38. Zhang XQ, Klaver P, van Santen R, van de Sanden MCM, Bieberle-Hutter A (2016) Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. J Phys Chem C 120:18201–18208

    Article  CAS  Google Scholar 

  39. Hellman A, Iandolo B, Wickman B, Gronbeck H, Baltrusaitis J (2015) Electro-oxidation of water on hematite: effects of surface termination and oxygen vacancies investigated by first-principles. Surf Sci 640:45–49

    Article  CAS  Google Scholar 

  40. Zhang J, Lin Q, Wang Z, Liu H, Li X, Zhang Y (2021) Identifying water oxidation mechanisms at pure and titanium-doped hematite-based photoanodes with spectroelectrochemistry. Small Methods 5:e2100976

    Article  Google Scholar 

  41. Xiao JR, Du BR, Hu SY, Zhong J, Chen XY, Zhang YH, Cai DR, Zhou SF, Zhan GW (2021) Simultaneously enhanced charge separation and transfer in cocatalyst-free hematite photoanode by Mo/Sn codoping. ACS Appl Energy Mater 4:10368–10379

    Article  CAS  Google Scholar 

  42. Yang X, Zheng Z, Hu J, Qu J, Ma D, Li J, Guo C, Li CM (2021) Observation of 4th-order water oxidation kinetics by time-resolved photovoltage spectroscopy. iScience 24:103500

    Article  CAS  Google Scholar 

  43. Kafizas A, Ma YM, Pastor E, Pendlebury SR, Mesa C, Francas L, Le Formal F, Noor N, Ling M, Sotelo-Vazquez C, Carmalt CJ, Parkin IP, Durrant JR (2017) Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: a rate law analysis. ACS Catal 7:4896–4903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (Project. No. 22008163 and U1604121), the projects (20KJB150042 and 21KJB150038) from Natural Science Research Project of Higher Education Institutions in Jiangsu Province and the projects from Natural Science Foundation of Jiangsu Province (BK20210867 and BK20180103). We thank Mr. Xinwei Wang for checking the equations.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xiaogang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1825 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Hu, J., Qu, J. et al. A Numerical Prediction of 4th-Order Kinetics for Photocatalytic Oxygen Evolution Reactions. Catal Lett 153, 138–149 (2023). https://doi.org/10.1007/s10562-022-03959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03959-8

Keywords

Navigation