Skip to main content

Advertisement

Log in

Co-processing of Atmospheric Gas Oil with Rapeseed Oil Over Sulfur-Free Supported and Phosphorus-Modified Co-Mo and Ni-Mo Carbide Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sulfur-free Al2O3-supported Co-Mo and Ni-Mo carbide catalysts have shown a significant catalyst activity during hydrotreating. According to our previous studies, a catalyst modification with phosphorus is a promising way to improve catalyst activity. In this paper, we build on our previous research by studying six sulfur-free Al2O3-supported and phosphorus-modified (0.5, 1.5 and 2.5 wt%) Co-Mo and Ni-Mo carbide catalysts for the hydrotreating of atmospheric gas oil and its co-processing with atmospheric gas oil (5, 10 and 25 wt%) under industrial conditions (330–350 °C, 5.5 MPa, WHSV 1–2 h−1). Adding 0.5 wt% of phosphorus increases catalyst acidity and reducibility, positively affecting catalyst activity (HDS 10–20%, HDN 10–15%). During co-processing, adding 0.5 wt% of phosphorus to the catalysts also offers better stability results even at the highest ratio (75/25). Our results enable us to evaluate the effect of phosphorus addition on catalyst properties and activity, developing a suitable alternative to commercial catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bezergianni S, Dimitriadis A (2013) Comparison between different types of renewable diesel. Renew Sust Energ Rev 21:110–116

    Article  CAS  Google Scholar 

  2. Bezergianni S, Dimitriadis A, Kikhtyanin O, Kubička D (2018) Refinery co-processing of renewable feeds. Prog Energy Combust 68:29–64

    Article  Google Scholar 

  3. Al-Sabawi M, Chen J (2012) Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks: a review. Energ Fuel 26:5373–5399

    Article  CAS  Google Scholar 

  4. Mochida I, Choi K-H (2004) An overview of hydrodesulfurization and hydrodenitrogenation. J Jpn Petrol Inst 47(3):145–163

    Article  CAS  Google Scholar 

  5. Gosselink RW, Hollak SAW, Chang SW, van Haveren J, de Jong KP, Bitter JH, van Es DS (2013) Reaction pathways for the deoxygenation of vegetable oils and related model compounds. Chemsuschem 6:1576–1594

    Article  PubMed  CAS  Google Scholar 

  6. Kim SK, Han JY, Lee H, Yum T, Kim Y, Kim J (2014) Production of renewable diesel via catalytic deoxygenation of natural triglycerides: comprehensive understanding of reaction intermediates and hydrocarbons. Appl Energy 116:199–205

    Article  CAS  Google Scholar 

  7. Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J (2012) Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94:578–585

    Article  CAS  Google Scholar 

  8. Kubička D (2008) Future refining catalysis-introduction of biomass feedstocks. Collect Czech Chem Commun 73:1015–1044

    Article  Google Scholar 

  9. De Paz CH, Vráblík A, Hidalgo Herrado JM, Velvarská R, Černý R (2021) Animal fats as a suitable feedstock for co-processing with atmospheric gas oil. Sustain Energy Fuels 5(19):4955–4964

    Article  Google Scholar 

  10. Bezergianni S, Dimitriadis A, Meletidis G (2014) Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures. Fuel 125:129–136

    Article  CAS  Google Scholar 

  11. Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixture. Appl Catal A 329:120–129

    Article  CAS  Google Scholar 

  12. Vonortas A, Kubička D, Papayannakos N (2014) Catalytic co-hydroprocessing of gasoil-palm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst. Fuel 116:49–55

    Article  CAS  Google Scholar 

  13. Kubička D, Horáček J (2011) Deactivation of HDS catalysts in deoxygenation of vegetable oils. Appl Catal A 394:9–17

    Article  Google Scholar 

  14. Guzman A, Torres JE, Prada LP, Nuñez ML (2010) Hydroprocessing of crude palm oil at pilot plant scale. Catal Today 156:38–43

    Article  CAS  Google Scholar 

  15. Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A 240:1–28

    Article  CAS  Google Scholar 

  16. Ramanathan S, Yu CC, Oyama ST (1998) New catalysts for hydroprocessing: bimetallic oxynitrides. J Catal 173:10–16

    Article  CAS  Google Scholar 

  17. Dhandapani B, Clair TS, Oyama ST (1998) Simultaneous hydrodesulfurization, hydrodeoxygenation and hydrogenation with molybdenum carbide. Appl Catal A 168:219–228

    Article  CAS  Google Scholar 

  18. De Paz Carmona H, Horáček J, Tišler Z, Aktmetzyanova U (2019) Sulfur free supported MoCx and MoNx catalysts for the hydrotreatment of atmospheric gasoil and its blends with rapeseed oil. Fuel 254:115582

    Article  Google Scholar 

  19. Führer M, van Haasterecht T, Bitter JH (2020) Molybdenum and tungsten carbides can shine too. Catal Sci Technol 10:6089

    Article  Google Scholar 

  20. Horáček J, Akhmetzyanova U, Skuhrovcová L, Tišler Z, De Paz Carmona H (2020) Alumina-supported MoNx, MoCx and MoPx catalysts for the hydrotreatment of rapeseed oil. Appl Catal B 263:118328

    Article  Google Scholar 

  21. Golubeva MA, Zakharyan EM, Maximov AL (2020) Transition metal phosphides (Ni Co, Mo, W) for hydrodeoxygenation of biorefinery products (a review). Petrol Chem 60(10):1109–1128

    Article  CAS  Google Scholar 

  22. Sullivan MM, Chen CJ, Bhan A (2016) Catalytic deoxygenation on transition metal carbide catalysts. Catal Sci Technol 6:602

    Article  CAS  Google Scholar 

  23. Sousa LA, Zotin JL, da Silva VT (2012) Hydrotreatment of sunflower oil using supported molybdenum carbide. Appl Catal A 449:105–111

    Article  CAS  Google Scholar 

  24. Wang F, Xu J, Jiang J, Liu P, Li F, Ye J, Zhou M (2018) Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst. Fuel 216:738–746

    Article  CAS  Google Scholar 

  25. Al-Megren HA, Xiao T, Gonzalez-Cortes SL, Al-Khowaiter SH, Green MLH (2005) Comparison of bulk CoMo bimetallic carbide, oxide, nitride and sulfide catalysts for pyridine hydrodenitrogenation. J Mol Catal A 225:143–148

    Article  CAS  Google Scholar 

  26. Da Costa P, Potvin C, Manoli JM, Genin B, Djéga-Mariadassou G (2004) Deep hydrodesulphurization and hydrogenation of diesel fuels on alumina-supported and bulk molybdenum carbide catalysts. Fuel 83:1717–1726

    Article  Google Scholar 

  27. Breysee M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M (2003) Deepdesulfurization: reactions, catalysts and technological challenges. Catal Today 84:129–138

    Article  Google Scholar 

  28. De Paz Carmona H, Akhmetzyanova U, Tišler Z, Vondrová P (2020) Hydrotreating atmospheric gasoil and co-processing with rapeseed oil using Ni-Mo and Co-Mo carbide catalysts. Fuel 268:117363

    Article  Google Scholar 

  29. Sundaramurthy V, Dalai AK, Adjaye J (2006) Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen. Appl Catal A 311:155–163

    Article  CAS  Google Scholar 

  30. Sundaramurthy V, Dalai AK, Adjaye J (2007) Effect of phosphorus addition on the hydrotreating activity of NiMo/Al2O3 carbide catalyst. Catal Today 125:239–247

    Article  CAS  Google Scholar 

  31. Da Costa P, Potvin C, Manoli JM, Breysse M, Djéga-Mariadassou G (2001) Nivel phosphorus-doped alumina-supported molybdenum and tungsten carbides: synthesis, characterisation and hydrogenation properties. Catal Lett 72(1–2):91–97

    Article  Google Scholar 

  32. Sundaramurthy V, Dalai AK, Adjaye J (2006) HDN and HDS of different gas oils derived from Athabasca bitumen over phosphorus-doped NiMo/γ-Al2O3 carbides. Appl Catal B 68:38–48

    Article  CAS  Google Scholar 

  33. De Paz CH, Svobodová E, Tišler Z, Akhmetzyanova U, Strejcová K (2021) Hydrotreating of atmospheric gas oil and co-processing with rapeseed oil using sulfur-free PMoCx/Al2O3 catalysts. ACS Omega 6:7680–7692

    Article  Google Scholar 

  34. Maity SK, Ancheyta J, Rana MS, Rayo P (2005) Effect of phosphorus on activity of hydrotreating catalysts of Maya heavy crude. Catal Today 109:42–48

    Article  CAS  Google Scholar 

  35. Silvy RP (2019) Parameters controlling the scale-up of CoMoP/ϒ-Al2O3 and NiMoP/ϒ-Al2O3 catalysts for the hydrotreating and mild-hydrocracking of heavy gasoil. Catal Today 338:93–99

    Article  Google Scholar 

  36. Vatutina YV, Klimov OV, Stolyarova EA, Nadeina KA, Danilova IG, Chesalov YA, Gerasimov EY, Prosvirin IP, Noskov AS (2019) Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating. Catal Today 329:13–23

    Article  CAS  Google Scholar 

  37. Sundaramurthy V, Dalai AK, Adjaye J (2008) The effect of phosphorus on hydrotreating property of NiMo/ϒ-Al2O3 nitride catalyst. Appl Catal A 335:204–210

    Article  CAS  Google Scholar 

  38. Perez-Romo P, Potvin C, Manoli JM, Chehimi MM, Djéga-Mariadassou G (2002) Phosphorus-doped molybdenum oxynitride and: synthesis, characterization, and determination of turnover rates for propene hydrogenation. J Catal 208:187–196

    Article  CAS  Google Scholar 

  39. Tanimu A, Khalid A (2019) Advanced hydrodesulfurization catalysts: a review of design and synthesis. Energy Fuel 33(4):2810–2838

    Article  CAS  Google Scholar 

  40. Walendziewski J, Stolarski M, Łużny R, Klimek B (2009) Hydroprocessing of light gas oil–rape oil mixtures. Fuel Process Technol 90:686–691

    Article  CAS  Google Scholar 

  41. Díaz de León JN, Kumar CR, Antúnez-García J, Fuentes-Moyado S (2019) Recent insights in transition metal sulfide hydrodesulfurization catalysts for the production of ultra low sulfur diesel: a short review. Catalysts 9(1):87

    Article  Google Scholar 

  42. De Mello MD, de Almeida Braggio F, da Costa Magalhães B, Luiz Zotin J, Pereira da Silva MA (2017) Effects of phosphprus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/alumina catalysts. Ind Eng Chem Res 56:10287–10299

    Article  Google Scholar 

  43. Dhandapani B, Ramanathan S, Yu CC, Frühberger B, Chen G, Oyama ST (1998) Synthesis, characterization, and reactivity studies of supported Mo2C with phosphorus additive. J Catal 176:61–67

    Article  CAS  Google Scholar 

  44. Ferdous D, Dalai AK, Adjaye J (2004) A series of NiMo/Al2O3 catalysts containing boron and phosphorus Part II. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen. Appl Catal A 260:53–162

    Google Scholar 

  45. Satyarthi JK, Chiranjeevi T, Gokak DT, Viswanathan PS (2014) Studies on co-processing of jatropha oil with diesel fraction in hydrodesulfurization. Fuel Process Technol 118:180–186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is a result of the project which was carried out within the financial support of the Ministry of Industry and Trade of the Czech Republic with institutional support for long-term conceptual development of research organisation. The result was achieved using the infrastructure included in the project Efficient Use of Energy Resources Using Catalytic Processes (LM2018119) which has been financially supported by MEYS within the targeted support of large infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor de Paz Carmona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paz Carmona, H., Tišler, Z., Svobodová, E. et al. Co-processing of Atmospheric Gas Oil with Rapeseed Oil Over Sulfur-Free Supported and Phosphorus-Modified Co-Mo and Ni-Mo Carbide Catalysts. Catal Lett 152, 3814–3824 (2022). https://doi.org/10.1007/s10562-022-03958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03958-9

Navigation