Skip to main content
Log in

First-Principles Study of Methanol Adsorption and Dissociation Reactivity on the Anatase TiO2(101) Surface: The Effect of Co doping and Oxygen Vacancy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methanol is a simple prototype for many organic compounds, and its dissociation plays an essential role in C1 chemistry reactions. Anatase TiO2(101) surface with Co doping and oxygen vacancy (VO) for the adsorption and reactivity of methanol has been studied based on density functional theory. Compared the perfect anatase TiO2(101) surface, the doping of Co5c atom is conducive to the adsorption of dissociative methanol and reduces the dissociation energy barrier to 0.13 and 0.25 eV, respectively. Moreover, the adsorption and reactivity of methanol are also affected by the oxygen vacancy, which the presence of oxygen vacancy decreases the dissociation energy barrier of methanol for the Co6c doped anatase TiO2(101) systems. The dissociation barrier is dependent on the orientation of methanol molecules. Our research is conducive to broadening the comprehension of the activity of organic molecules on anatase TiO2 nanoparticles.

Graphical Abstract

The adsorption and reactivity of methanol on the anatase TiO2(101) surface is the affected by Co doping、oxygen vacancy and the orientation of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tatibouët J (1997) Methanol oxidation as a catalytic surface probe. Appl Catal A-Gen 148:213–252

    Article  Google Scholar 

  2. Zhang H, Zhou W, Du Y, Ping Y, Wang C, Xu J (2010) Enhanced electrocatalytic performance for methanol oxidation on Pt–TiO2/ITO electrode under UV illumination. Int J Hydrogen Energ 35:13290–132973

    Article  CAS  Google Scholar 

  3. Huang S, Ouyang T, Zheng BF, Dan M, Liu ZQ (2021) Enhanced photoelectrocatalytic Activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity. Angew Chem Int Edit 60:9546–9552

    Article  CAS  Google Scholar 

  4. Li X, Paier J (2019) Partial oxidation of methanol on the Fe3O4 (111) surface studied by density functional theory. J Phys Chem C 123:8429–8438

    Article  CAS  Google Scholar 

  5. Setvin M, Shi X, Hulva J, Simschitz T, Parkinson GS, Schmid M, Di Valentin C, Selloni A, Diebold U (2017) Methanol on anatase TiO2 (101): mechanistic insights into photocatalysis. Acs Catal 7:7081–7091

    Article  CAS  Google Scholar 

  6. Chiarello GL, Aguirre MH, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273:182–190

    Article  CAS  Google Scholar 

  7. Chiarello GL, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280:168–177

    Article  CAS  Google Scholar 

  8. Kominami H, Sugahara H, Hashimoto K (2010) Photocatalytic selective oxidation of methanol to methyl formate in gas phase over titanium(IV) oxide in a flow-type reactor. Catal Commun 11:426–429

    Article  CAS  Google Scholar 

  9. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  10. Guo Q, Zhou CY, Ma ZB, Ren ZF, Fan HJ, Yang XM (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45:3701–3730

    Article  CAS  Google Scholar 

  11. Zhang Z, Bondarchuk O, White JM, Kay B, Dohnálek Z (2006) Imaging adsorbate O−H bond cleavage: methanol on TiO2(110). J Am Chem Soc 128:4198–4199

    Article  CAS  Google Scholar 

  12. Herman GS, Dohnálek Z, Ruzycki N, Diebold U (2003) Experimental investigation of the interaction of water and methanol with anatase TiO2(101). J Phys Chem B 107:2788–2795

    Article  CAS  Google Scholar 

  13. Tilocca A, Selloni A (2004) Methanol adsorption and reactivity on clean and hydroxylated anatase (101) surfaces. J Phys Chem B 108:19314

    Article  CAS  Google Scholar 

  14. Wang CY, Groenzin H, Shultz MJ (2004) Surface characterization of nanoscale TiO2 film by sum frequency generation using methanol as a molecular probe. J Phys Chem B 108:265–272

    Article  CAS  Google Scholar 

  15. He YB, Dulub O, Cheng HZ, Selloni A, Diebold U (2009) Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys Rev Lett 102:106105

    Article  Google Scholar 

  16. Setvin M, Aschauer U, Scheiber P, Li YF, Hou W, Schmid M, Selloni A, Diebold U (2013) Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341:988–991

    Article  CAS  Google Scholar 

  17. Bennett DA, Cargnello M, Gordon TR, Murray CB, Vohs JM (2015) Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2 thin films. Phys Chem Chem Phys 17:17190–17201

    Article  CAS  Google Scholar 

  18. Xu CB, Yang WS, Guo Q, Dai DX, Chen MD, Yang XM (2014) Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101). J Am Chem Soc 136:602–605

    Article  CAS  Google Scholar 

  19. Oliver P, Watson G, Kelsey E, Parker S (1997) Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. J Mater Chem 7:563–568

    Article  CAS  Google Scholar 

  20. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces anatase surfaces. Phys Rev B 63:155409

    Article  Google Scholar 

  21. Dahal A, Petrik NG, Wu Y, Kimmel GA, Dohnalek Z (2019) Adsorption and reaction of methanol on anatase TiO2 (101) single crystals and faceted nanoparticles. J Phys Chem C 123:24133–24145

    Article  CAS  Google Scholar 

  22. Aschauer U, Chen J, Selloni A (2010) Peroxide and superoxide states of adsorbed O2 on anatase TiO2 (101) with subsurface defects. Phys Chem Chem Phys 12:12956–12960

    Article  CAS  Google Scholar 

  23. Li YD, Gao Y (2014) Interplay between water and TiO2 anatase (101) surface with subsurface oxygen vacancy. Phys Rev Lett 112:206101

    Article  Google Scholar 

  24. Ikäläinen S, Laasonen K (2013) A DFT study of adsorption of perylene on clean and altered anatase (101) TiO2. Phys Chem Chem Phys 15:11673–11678

    Article  Google Scholar 

  25. Lang XF, Liang YH, Sun LL, Zhou SX, Lau WM (2017) Interplay between methanol and anatase TiO2(101) surface: the effect of subsurface oxygen vacancy. J Phys Chem C 121:6072–6080

    Article  CAS  Google Scholar 

  26. Xiao P, Uchaker E, He H, Zhou M, Zhou X, Zhang Y (2014) A first-principles study of Pt–Ni bimetallic cluster adsorption on the anatase TiO2 (101) surface: Probing electron effect of Ni in TiO2 (101)-bimetallic cluster (Pt–Ni) on the adsorption and dissociation of methanol. Appl Surf Sci 315:81–89

    Article  Google Scholar 

  27. Liu FL, Xiao P, Tian WQ, Zhou M, Li YH, Cui X, Zhang YH, Zhou X (2015) Hydrogenation of Pt/TiO2{101} nanobelts: a driving force for the improvement of methanol catalysis. Phys Chem Chem Phys 17:28626–28634

    Article  CAS  Google Scholar 

  28. Bahr Uj I H, Abdullah N, Rogers SM, Wells PP, Bowker M (2019) Pd local structure and size correlations to the activity of Pd/TiO2 for photocatalytic reforming of methanol. Phys Chem Chem Phys 21:16154–16160

    Article  Google Scholar 

  29. Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15:20037–20045

    Article  CAS  Google Scholar 

  30. Gao B, Wang T, Fan X, Gong H, Guo H, Xia W, Feng Y, Huang X, He J (2017) Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectrochemical performance under visible light. Inorg Chem Front 4:898–906

    Article  CAS  Google Scholar 

  31. Han Y, Liu CJ, Ge Q (2009) Effect of Pt clusters on methanol adsorption and dissociation over perfect and defective anatase TiO2(101) Surface. J Phys Chem C 113:20674–20682

    Article  CAS  Google Scholar 

  32. Mragui AE, Zegaoui O, Silva J (2021) Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere 266:128931

    Article  Google Scholar 

  33. Tian Y, Zhang X, Zhang Y, Li J, Bakenov Z (2020) Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. J Alloy Compd 861:157969

    Article  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  36. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1998) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  38. Grimme S (2010) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  39. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  40. Cheng H, Selloni A (2009) Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2 (101). J Chem Phys 131:054703

    Article  Google Scholar 

  41. Henkelman G, Uberuaga BP, JoóNsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  42. Henkelman G, Joónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  43. Burdett K, Hughbanks T, Miller G, Richardson J, Smith J (1987) Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J Am Chem Soc 109:3639–3646

    Article  CAS  Google Scholar 

  44. Zhou CY, Ren ZF, Tan SJ, Ma ZB, Mao XC, Dai DX, Fan HJ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG (2010) Site-specific photocatalytic splitting of methanol on TiO2(110). Chem Sci 1:575–580

    Article  CAS  Google Scholar 

  45. Mao XC, Wang ZQ, Lang XF, Hao QQ, Wen B, Dai DX, Zhou CY, Liu LM, Yang XM (2015) Effect of surface structure on the photoreactivity of TiO2. J Phys Chem C 119:6121–6127

    Article  CAS  Google Scholar 

  46. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  47. Cheng H, Selloni A (2009) Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys Rev B 79:092101

    Google Scholar 

  48. Li HY, Wang HF, Gong XQ, Guo YL, Guo Y, Lu G, Hu P (2009) Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications. Phys Rev B 79:193401–193404

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 21873042) and Program for LiaoNing Excellent Talents in University, China (No. LJQ2015042). We wish to thank the Specialized Fund for Doctoral Research Start-up of Liaoning University (No. a210001023) and the Doctoral Research of Jilin Engineering Normal University (No. BSKJ201912). We acknowledge the Computing Center of Jilin Province, Beijing PARATERA Tech CO., Ltd and National Supercomputing Center in Zhengzhou for supercomputer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Yang Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 809 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sun, W., Bi, Z. et al. First-Principles Study of Methanol Adsorption and Dissociation Reactivity on the Anatase TiO2(101) Surface: The Effect of Co doping and Oxygen Vacancy. Catal Lett 153, 104–113 (2023). https://doi.org/10.1007/s10562-022-03957-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03957-w

Keywords

Navigation