Skip to main content
Log in

Promotional Effects of Nd2O3 Doped Ni/Al2O3–Y2O3 Catalysts on Oxygen Vacancy and Coking-Resistant in Dry Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The CO2 utilization is a significant issue due to the rigorous greenhouse effect, and the major bottleneck of methane dry reforming reaction is carbon deposition. Nd2O3 promoted Ni-based catalysts have ample oxygen vacancies, which could promote the decomposition of carbon dioxide into CO and O* species and thus may perform a favorable anti-coking ability to overcome this difficulty, and Ni/Al2O3–Y2O3–x%Nd2O3 (x = 0, 2, 2.5, 3, 3.5, 4) catalysts were synthesized by sol–gel method and employed in DRM. The XRD, BET, TEM, TG, CO2-TPD and XPS were used to characterize the morphology and physicochemical properties of the prepared samples, confirming the Nd2O3 addition in Ni/Al2O3–Y2O3 catalysts behaved abundant oxygen vacancies, increased basicity of the support, mesoporous structures with small metallic Ni particle size, and high dispersion of Ni. Moreover, the catalytic performances were evaluated in a fixed bed tubular reactor, and the experimental results indicated Ni/Al2O3–Y2O3–3%Nd2O3 demonstrated an outstanding activity and stability at 800 °C owing to both inhibition of carbon deposition and Ni agglomeration, which was largely due to the sufficient oxygen vacancies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sengupta S, Deo GJ (2015) Modifying alumina with CaO or MgO in supported Ni and Ni–Co catalysts and its effect on dry reforming of CH4. J CO2 Util 10:67–77

    Article  CAS  Google Scholar 

  2. Ashcroft AT, Cheetham AK, Green M, Vernon PJN (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352(6332):225–226

    Article  CAS  Google Scholar 

  3. Buelens LC, Galvita VV, Poelman H, Detavernier C, Marin GBJ (2016) Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354(6311):449–452

    Article  CAS  Google Scholar 

  4. Yuan W, Wang Y, Zou Y, Tan W, Hou W, Zheng L et al (2016) Dry reforming of methane for syngas production over well-dispersed mesoporous NiCe0.5Zr0.5O3 with Ni nanoparticles immobilized. Catal Lett 146(9):1663–1673

    Article  CAS  Google Scholar 

  5. Meng Z, Wang Z, Li Y (2021) Hierarchical layered porous SiO2 supported bimetallic NiM/EXVTM-SiO2 (M = Co, Cu, Fe) catalysts derived from vermiculite for CO2 reforming of methane. Catal Lett 151(12):3675–3689

    Article  CAS  Google Scholar 

  6. Chen S, Zaffran J, Yang B (2020) Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation. Appl Catal B 270:118859

    Article  CAS  Google Scholar 

  7. Zhang G, Wang Y, Li X, Bai Y, Zheng L, Wu L et al (2018) Effect of Gd promoter on the structure and catalytic performance of mesoporous Ni/Al2O3–CeO2 in dry reforming of methane. Ind Eng Chem Res 57(50):17076–17085

    Article  CAS  Google Scholar 

  8. Pal DB, Chand R, Upadhyay PK et al (2018) Performance of water gas shift reaction catalysts: A review. Renew Sustain Energy Rev 93:549–565

    Article  CAS  Google Scholar 

  9. Al-Fatesh AS, Arafat Y, Kasim SO, Ibrahim AA, Abasaeed AE, Fakeeha AH (2021) In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl Catal B 280:119445

    Article  CAS  Google Scholar 

  10. Sun HJ, Huang J, Wang H, Zhang JG (2007) CO2 reforming of CH4 over xerogel NiTi and NiTiAl catalysts. Ind Eng Chem Res 46(13):4444–4450

    Article  CAS  Google Scholar 

  11. Abdollahifar M, Haghighi M (2014) Syngas production via dry reforming of methane over Ni/Al2O3–MgO nanocatalyst synthesized using ultrasound energy. J Ind Eng Chem 20(4):1845–1851

    Article  CAS  Google Scholar 

  12. Gao XY, Hidajat K, Kawi S (2016) Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane. J CO2 Util 15:146–153

    Article  CAS  Google Scholar 

  13. Marinho ALA, Toniolo FS, Noronha FB, Epron F, Duprez D, Bion N (2021) Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl Catal B 281:119459

    Article  CAS  Google Scholar 

  14. Bian Z, Das S, Ming HW, Hongmanorom P, Kawi SJC (2017) Cover feature: a review on bimetallic nickel-based catalysts for CO2 reforming of methane (ChemPhysChem 22/2017). ChemPhysChem 18(22):3117–3134

    Article  CAS  Google Scholar 

  15. Parola VL, Sun C, Beaunier P, Liotta L, Costa PD (2020) Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 methanation. ACS Appl Nano Mater 3(12):12355–12368

    Article  Google Scholar 

  16. Kogler M, Kock EM, Perfler L, Bielz T, Stoger-Pollach M, Hetaba W et al (2014) Methane decomposition and carbon growth on Y2O3, yttria-stabilized zirconia, and ZrO2. Chem Mater 26(4):1690–1701

    Article  CAS  Google Scholar 

  17. Fakeeha AH, Al Fatesh AS, Ibrahim AA, Kurdi AN, Abasaeed AE (2021) Yttria modified ZrO2 supported Ni catalysts for CO2 reforming of methane: The role of Ce promoter. ACS Omega 6(2):1280–1288

    Article  CAS  Google Scholar 

  18. Li B, Zhang S (2013) Methane reforming with CO2 using nickel catalysts supported on yttria-doped SBA-15 mesoporous materials via sol–gel process. Int J Hydrogen Energy 38(33):14250–14260

    Article  CAS  Google Scholar 

  19. Huang X, Xue G, Wang C, Zhao N, Sun N, Wei W et al (2016) Highly stable mesoporous NiO–Y2O3–Al2O3 catalysts for CO2 reforming of methane: effect of Ni embedding and Y2O3 promotion. Catal Sci Technol 6(2):449–459

    Article  CAS  Google Scholar 

  20. Zhan H, Shi X, Ma B, Liu W, Jiao X, Huang X (2019) Facile one-step preparation of ordered mesoporous Ni–M–Al (M = K, Mg, Y, and Ce) oxide catalysts for methane dry reforming. New J Chem 43(31):12292–12298

    Article  CAS  Google Scholar 

  21. Wang Y, Wang L, Gan N, Lim Z-Y, Wu C, Peng J et al (2014) Evaluation of Ni/Y2O3/Al2O3 catalysts for hydrogen production by autothermal reforming of methane. Int J Hydrogen Energy 39(21):10971–10979

    Article  CAS  Google Scholar 

  22. Damyanova S, Shtereva I, Pawelec B, Mihaylov L, Fierro JLG (2020) Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane. Appl Catal B 278:1–10

    Article  Google Scholar 

  23. Sun W, Zheng L, Wang Y, Li D, Liu Z, Wu L et al (2020) Study of thermodynamics and experiment on direct synthesis of dimethyl carbonate from carbon dioxide and methanol over yttrium oxide. Ind Eng Chem Res 59(10):4281–4290

    Article  CAS  Google Scholar 

  24. Al-Fatesh AS (2017) Promotional effect of Gd over Ni/Y2O3 catalyst used in dry reforming of CH4 for H2 production. Int J Hydrogen Energy 42(30):18805–18816

    Article  CAS  Google Scholar 

  25. Guan L, Li J, Zhao N, Wei W, Sun YJF (2008) CO2 reforming of CH4 over stabilized mesoporous Ni–CaO–ZrO2 composites. Fuel 87:2477–2481

    Article  Google Scholar 

  26. Al-Mamoori A, Lawson S, Rownaghi AA, Rezaei FJE (2019) Improving adsorptive performance of CaO for high temperature CO2 capture through Fe and Ga doping. Energy Fuels 33:1404–1413

    Article  CAS  Google Scholar 

  27. Mcfarland EW, Metiu HJCR (2013) Catalysis by doped oxides. Chem Rev 113(6):4391–4427

    Article  CAS  Google Scholar 

  28. Zhong W, Wang W, Ling Z, Dong J (2016) Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal Sci Technol 6:3845

    Article  Google Scholar 

  29. Liu B, Li C, Zhang G, Yao X, Chuang S, Li Z (2018) Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal 8:1–8

    Article  Google Scholar 

  30. Ayodele BV, Hossain SS, Lam SS, Osazuwa OU, Khan MR, Cheng CK (2016) Syngas production from CO2 reforming of methane over neodymium sesquioxide supported cobalt catalyst. J Nat Gas Sci Eng 34:873–885

    Article  CAS  Google Scholar 

  31. Ocsachoque M, Bengoa J, Gazzoli D, González MG (2011) Role of CeO2 in Rh/α-Al2O3 catalysts for CO2 reforming of methane. Catal Lett 141(11):1643–1650

    Article  CAS  Google Scholar 

  32. Li L, Yang Z, Hu D, Shan J, Zhang Y-H, Li J-L (2017) CO2 reforming of methane over nickel catalysts supported on La-doped MCF. Catal Lett 148(2):564–575

    Article  Google Scholar 

  33. Sato S, Takahashi R, Kobune M, Gotoh H (2009) Basic properties of rare earth oxides. Appl Catal A 356(1):57–63

    Article  CAS  Google Scholar 

  34. He L, Xuan Y, Zhang F, Wang X, Pan H, Ren J et al (2020) A new perspective of co-doping and Nd segregation effect on proton stability and transportation in Y and Nd co-doped BaCeO3. Int J Hydrogen Energy 46:1096–1105

    Article  Google Scholar 

  35. Fang X, Zhang J, Liu J, Wang C, Huang Q, Xu X et al (2018) Methane dry reforming over Ni/Mg-Al-O: on the significant promotional effects of rare earth Ce and Nd metal oxides. J CO2 Util 25:242–253

    Article  CAS  Google Scholar 

  36. Li B, Su W, Lin X, Wang X (2017) Catalytic performance and characterization of neodymium-containing mesoporous silica supported nickel catalysts for methane reforming to syngas. Int J Hydrogen Energy 42(17):12197–12209

    Article  CAS  Google Scholar 

  37. Amin MH, Putla S, Bee Abd Hamid S, Bhargava SK (2015) Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane. Appl Catal A 492:160–168

    Article  CAS  Google Scholar 

  38. Aramouni NAK, Zeaiter J, Kwapinski W, Leahy JJ, Ahmad MN (2020) Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane. Int J Hydrogen Energy 45(35):17153–17163

    Article  CAS  Google Scholar 

  39. Peng R, Chen Y, Zhang B, Li Z, Zhang JJ (2021) Tailoring the stability of Ni-Fe/mayenite in methane-Carbon dioxide reforming. Fuel 284:118909

    Article  CAS  Google Scholar 

  40. Qm A, Lg B, Yuan FB, Hl B, Jz A, Tsz A et al (2019) Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst. Fuel Process Technol 188:98–104

    Article  Google Scholar 

  41. Porta G, Minelli L, Russo PA, Cimino P, Rossi D, Lisi S et al (2001) AFeO3 (A = La, Nd, Sm) and LaFe1-xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl Catal B 29(4):239–250

    Article  Google Scholar 

  42. Guo J, Lou H, Hong Z, Chai D, Zheng XJ (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273(1–2):75–82

    Article  CAS  Google Scholar 

  43. Bu K, Deng J, Zhang X, Kuboon S, Yan T, Li H et al (2020) Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane. Appl Catal B 267:118692

    Article  CAS  Google Scholar 

  44. Foo SY, Cheng CK, Nguyen TH, Adesina AA (2011) Evaluation of lanthanide-group promoters on Co–Ni/Al2O3 catalysts for CH4 dry reforming. J Mol Catal A 344(1–2):28–36

    Article  CAS  Google Scholar 

  45. Morales Anzures F, Salinas Hernández P, Mondragón Galicia G, Gutiérrez Martínez A, Tzompantzi Morales F, Romero Romo MA et al (2021) Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: high H2/CO ratio. Int J Hydrogen Energy 46(51):26224–26233

    Article  CAS  Google Scholar 

  46. Jawad A, Rezaei F, Rownaghi AA (2020) Highly efficient Pt/Mo-Fe/Ni-based Al2O3-CeO2 catalysts for dry reforming of methane. Catal Today 350:80–90

    Article  CAS  Google Scholar 

  47. Luo J, Qiao X, Jin J, Tian X, Fan H, Yu D et al (2020) A strategy to unlock the potential of CrN as a highly active oxygen reduction reaction catalyst. J Mater Chem A 8:8575

    Article  CAS  Google Scholar 

  48. Iwanowski RJ, Heinonen MH, Pracka I, Kachniarz J (2013) XPS characterization of single crystalline SrLaGa3O7:Nd. Appl Surf Sci 283(20):168–174

    Article  CAS  Google Scholar 

  49. Xie T, Zhao X, Zhang J, Shi L, Zhang DJ (2015) Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int J Hydrogen Energy 40(31):9685–9695

    Article  CAS  Google Scholar 

  50. Hambali HU, Jalil AA, Abdulrasheed AA, Siang TJ, Abdullah TJ (2020) Effect of Ni-Ta ratio on the catalytic selectivity of fibrous Ni-Ta/ZSM-5 for dry reforming of methane. Chem Eng Sci 227:115952

    Article  CAS  Google Scholar 

  51. Ong CB, Ng LY, Mohammad AWJR (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable Sustain Energy Rev 81(pt1):536–551

    Article  CAS  Google Scholar 

  52. Pakhare D, Spivey JJ (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837

    Article  CAS  Google Scholar 

  53. Sutihiumporn K, Kawi SJ (2011) Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression. Int J Hydrogen Energy 36(22):14435–14446

    Article  Google Scholar 

  54. Ibrahim AA, FakEeHa AH, Al-Fatesh ASJ (2014) Enhancing hydrogen production by dry reforming process with strontium promoter. Int J Hydrogen Energy 39(4):1680–1687

    Article  CAS  Google Scholar 

  55. Amin A, Croiset E, Epling WJ (2011) Review of methane catalytic cracking for hydrogen production. Int J Hydrogen Energy 36(4):2904–2935

    Article  CAS  Google Scholar 

  56. Debek R, Grzybek T, Turek W et al (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature: on the effect of basicity. Catal Today 257:59–65

    Article  CAS  Google Scholar 

  57. Jing J-Y, Wei Z-H, Zhang Y-B, Bai H-C (2020) Li W-Y Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catal Today 356:589–596

    Article  CAS  Google Scholar 

  58. Yuan X, Li B, Wang X, Li B (2022) Synthesis gas production by dry reforming of methane over neodymium-modified hydrotalcite-derived nickel catalysts. Fuel Process Technol 227:107104

    Article  CAS  Google Scholar 

  59. Lara-García HA, Araiza DG, Méndez-Galván M, Tehuacanero-Cuapa S, Gómez-Cortés A, Díaz G (2020) Dry reforming of methane over nickel supported on Nd–ceria: enhancement of the catalytic properties and coke resistance. RSC Adv 10(55):33059–33070

    Article  Google Scholar 

  60. Serrano-Lotina A, Rodriguez L, Munoz G, Martin AJ, Folgado MA, Daza LJCC (2011) Biogas reforming over La-NiMgAl catalysts derived from hydrotalcite-like structure: Influence of calcination temperature. Catal Commun 12:961–967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22078262, 22108228), the Local Service Fund of Education Department of Shaanxi Province (18JC031) and the Project of Xi’an Science and Technology Bureau (2020KJRC0114). We thank eceshi (www.eceshi.com) for TPD, TPR and TEM, and thank Shiyanjia laboratory (www.shiyanjia.com) for TG analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Ding, X., Liu, Z. et al. Promotional Effects of Nd2O3 Doped Ni/Al2O3–Y2O3 Catalysts on Oxygen Vacancy and Coking-Resistant in Dry Reforming of Methane. Catal Lett 153, 19–31 (2023). https://doi.org/10.1007/s10562-022-03956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03956-x

Keywords

Navigation