Skip to main content

Advertisement

Log in

Rare Earth (Gd, Pr and La) Promoted Three-Dimensional Ordered Macro/Mesoporous Ni/CeZr Catalysts for Low-Temperature Catalytic Steam Reforming of Toluene as Tar Model

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nickel (Ni)-based catalyst is widely adopted for tar removing in the process of biomass gasification. In order to improve low-temperature catalytic activity of Ni-based catalyst, three-dimensional ordered macro/mesoporous (3DOM/m) Ce0.8Zr0.1M0.1 (M = Gd, Pr and La) ternary solid solutions were prepared and used as the carriers of Ni/Ce0.8Zr0.1M0.1 catalysts. The obtained catalysts were employed to catalyze the steam reforming of toluene (SRT). The results demonstrated that all the Ni/Ce0.8Zr0.1M0.1 showed excellent low-temperature catalytic activity and presented higher toluene conversion than Ni/Ce0.8Zr0.2. Among the catalysts, Ni/Ce0.8Zr0.1Pr0.1 exhibited the highest toluene conversion, reaching 96.1% at 550 ℃ (toluene = 185 μmol min−1, S/C = 3). The characterization results of catalysts showed that all the catalysts presented ordered three-dimensional morphology containing interconnected periodic macropores with abundant mesopores existing on the wall. The rare earth dopants were incorporated into the lattice of cerium-zirconium solid solution. As a result, the thermal stability of the carrier was improved, which made the BET specific surface area of the carrier increase and the dispersion of active component of Ni increase. Moreover, the incorporation of dopants produced more oxygen vacancies, thus improved reactive oxygen mobility. These superior properties of 3DOM/m Ce0.8Zr0.1M0.1 led to their excellent catalytic activity in SRT.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michel R, Łamacz A, Krzton A et al (2013) Steam reforming of α-methylnaphthalene as a model tar compound over olivine and olivine supported nickel. Fuel 109:653–660. https://doi.org/10.1016/j.fuel.2013.03.017

    Article  CAS  Google Scholar 

  2. Zhu F, Li X, Zhang H et al (2016) Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85. https://doi.org/10.1016/j.fuel.2016.02.065

    Article  CAS  Google Scholar 

  3. Phuphuakrat T, Namioka T, Yoshikawa K (2011) Absorptive removal of biomass tar using water and oily materials. Bioresour Technol 102:543–549. https://doi.org/10.1016/j.biortech.2010.07.073

    Article  PubMed  CAS  Google Scholar 

  4. Świerczyński D, Libs S, Courson C et al (2007) Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl Catal B Environ 74:211–222. https://doi.org/10.1016/j.apcatb.2007.01.017

    Article  CAS  Google Scholar 

  5. Zhang Z, Liu L, Shen B et al (2018) Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renew Sustain Energy Rev 94:1086–1109. https://doi.org/10.1016/j.rser.2018.07.010

    Article  CAS  Google Scholar 

  6. Adamu S, Xiong Q, Bakare IA et al (2019) Ni/Ce-Al2O3 for optimum hydrogen production from biomass/tar model compounds: Role of support type and ceria modification on desorption kinetics. Int J Hydrogen Energy 44:15811–15822. https://doi.org/10.1016/j.ijhydene.2018.12.136

    Article  CAS  Google Scholar 

  7. Jayaprakash S, Dewangan N, Jangam A et al (2021) LDH-derived Ni–MgO–Al2O3 catalysts for hydrogen-rich syngas production via steam reforming of biomass tar model: Effect of catalyst synthesis methods. Int J Hydrogen Energy 46:18338–18352. https://doi.org/10.1016/j.ijhydene.2021.03.013

    Article  CAS  Google Scholar 

  8. Jiao Y, Du Y, Wang J et al (2020) A investigation of multi-functional Ni/La-Al2O3-CeOx catalyst for bio-tar (simulated-toluene as model compound) conversion. J Energy Inst 93:395–404. https://doi.org/10.1016/j.joei.2019.02.001

    Article  CAS  Google Scholar 

  9. Guan G, Chen G, Kasai Y et al (2012) Catalytic steam reforming of biomass tar over iron- or nickel-based catalyst supported on calcined scallop shell. Appl Catal B Environ 115–116:159–168. https://doi.org/10.1016/j.apcatb.2011.12.009

    Article  CAS  Google Scholar 

  10. Li C, Hirabayashi D, Suzuki K (2010) Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst. Bioresour Technol 101:97–100. https://doi.org/10.1016/j.biortech.2009.03.043

    Article  CAS  Google Scholar 

  11. Carvalho FLS, Asencios YJO, Rego AMB et al (2014) Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-step polymerization method. Appl Catal A Gen 483:52–62. https://doi.org/10.1016/j.apcata.2014.06.027

    Article  CAS  Google Scholar 

  12. Park HJ, Park SH, Sohn JM et al (2010) Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresour Technol 101:101–103. https://doi.org/10.1016/j.biortech.2009.03.036

    Article  CAS  Google Scholar 

  13. Khajonvittayakul C, Tongnan V, Namo N, et al. (2021) Tar steam reforming for synthesis gas production over Ni-based on ceria/zirconia and La0.3Sr0.7Co0.7Fe0.3O3 in a packed-bed reactor. Chemosphere 277: 130280

  14. Kathiraser Y, Ashok J, Kawi S (2016) Synthesis and evaluation of highly dispersed SBA-15 supported Ni-Fe bimetallic catalysts for steam reforming of biomass derived tar reaction. Catal Sci Technol 6:4327–4336. https://doi.org/10.1039/c5cy01910a

    Article  CAS  Google Scholar 

  15. Wu W, Fan Q, Yi B et al (2020) Catalytic characteristics of a Ni-MgO/HZSM-5 catalyst for steam reforming of toluene. RSC Adv 10:20872–20881. https://doi.org/10.1039/d0ra02403a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ahmed T, Xiu S, Wang L et al (2018) Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound. Fuel 211:566–571. https://doi.org/10.1016/j.fuel.2017.09.051

    Article  CAS  Google Scholar 

  17. Li D, Lu M, Aragaki K et al (2016) Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene. Appl Catal B Environ 192:171–181. https://doi.org/10.1016/j.apcatb.2016.03.052

    Article  CAS  Google Scholar 

  18. Belbessai S, Achouri IE, Benyoussef EH et al (2021) Toluene steam reforming using nickel based catalysts made from mining residues. Catal Today 365:111–121. https://doi.org/10.1016/j.cattod.2020.07.087

    Article  CAS  Google Scholar 

  19. Zou X, Chen T, Zhang P et al (2018) High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production. Appl Energy 226:827–837. https://doi.org/10.1016/j.apenergy.2018.06.005

    Article  CAS  Google Scholar 

  20. De Lima SM, Da Silva AM, Da Costa LOO et al (2009) Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J Catal 268:268–281. https://doi.org/10.1016/j.jcat.2009.09.025

    Article  CAS  Google Scholar 

  21. Wang C, Sun N, Zhao N et al (2017) Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane. Catal Today 281:268–275. https://doi.org/10.1016/j.cattod.2016.03.026

    Article  CAS  Google Scholar 

  22. Wang C, Zhang Y, Wang Y et al (2017) Comparative studies of non-noble metal modified mesoporous M-Ni-CaO-ZrO2(M = Fe Co, Cu) catalysts for simulated biogas dry reforming. Chinese J Chem 35:113–120. https://doi.org/10.1002/cjoc.201600609

    Article  CAS  Google Scholar 

  23. Roh HS, Koo KY, Yoon WL (2009) Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process. Catal Today 146:71–75. https://doi.org/10.1016/j.cattod.2009.01.001

    Article  CAS  Google Scholar 

  24. Gao J, Guo J, Liang D et al (2008) Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts. Int J Hydrogen Energy 33:5493–5500. https://doi.org/10.1016/j.ijhydene.2008.07.040

    Article  CAS  Google Scholar 

  25. Miyazawa T, Kimura T, Nishikawa J et al (2006) Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catal Today 115:254–262. https://doi.org/10.1016/j.cattod.2006.02.055

    Article  CAS  Google Scholar 

  26. Zhou S, Chen Z, Gong H et al (2020) Low-temperature catalytic steam reforming of toluene as a biomass tar model compound over three-dimensional ordered macroporous Ni-Pt/Ce1−xZrxO2 catalysts. Appl Catal A Gen 607:117859. https://doi.org/10.1016/j.apcata.2020.117859

    Article  CAS  Google Scholar 

  27. Wang Q, Zhao B, Li G et al (2010) Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control. Environ Sci Technol 44:3870–3875. https://doi.org/10.1021/es903957e

    Article  PubMed  CAS  Google Scholar 

  28. Cao L, Ni C, Yuan Z et al (2009) Correlation between catalytic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/Ce0.45Zr0.45RE0.1 catalysts (RE = La, Pr, Nd, Sm, Eu, Gd, Tb). Catal Commun 10:1192–1195. https://doi.org/10.1016/j.catcom.2009.01.015

    Article  CAS  Google Scholar 

  29. Sadykov V, Mezentseva N, Alikina G et al (2007) Doped nanocrystalline pt-promoted ceria-zirconia as anode catalysts for IT SOFC: synthesis and properties vladislav. MRS Online Proc Libr 1023:3–8. https://doi.org/10.1557/PROC-1023-JJ02-07

    Article  Google Scholar 

  30. Laosiripojana N, Sutthisripok W, Kim-Lohsoontorn P et al (2010) Reactivity of Ce-ZrO2 (doped with La-, Gd-, Nb-, and Sm-) toward partial oxidation of liquefied petroleum gas: its application for sequential partial oxidation/steam reforming. Int J Hydrogen Energy 35:6747–6756. https://doi.org/10.1016/j.ijhydene.2010.04.095

    Article  CAS  Google Scholar 

  31. Li H, Zhang L, Dai H et al (2009) Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls. Inorg Chem 48:4421–4434. https://doi.org/10.1021/ic900132k

    Article  PubMed  CAS  Google Scholar 

  32. Abdul Ghani A, Torabi F, Ibrahim H (2017) Kinetics of hydrogen production by the autothermal reforming of crude glycerol over modified nickel supported catalyst. J Environ Chem Eng 5:5827–5835. https://doi.org/10.1016/j.jece.2017.11.022

    Article  CAS  Google Scholar 

  33. Li Z, Li M, Ashok J et al (2019) NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers Manag 180:822–830. https://doi.org/10.1016/j.enconman.2018.11.034

    Article  CAS  Google Scholar 

  34. Zhu T, Chen Z, Gong H et al (2020) Seeded-growth preparation of high-performance Ni/MgAl2O4catalysts for tar steam reforming. New J Chem 44:13692–13700. https://doi.org/10.1039/d0nj01468k

    Article  CAS  Google Scholar 

  35. Zhang Z, Ou Z, Qin C et al (2019) Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel. https://doi.org/10.1016/j.fuel.2019.116032

    Article  Google Scholar 

  36. Lu M, Xiong Z, Fang K et al (2020) Steam reforming of toluene over nickel catalysts supported on coal gangue ash. Renew Energy 160:385–395. https://doi.org/10.1016/j.renene.2020.06.012

    Article  CAS  Google Scholar 

  37. Mukai D, Murai Y, Higo T et al (2014) Effect of Pt addition to Ni/La0.7Sr0.3AlO3-δ catalyst on steam reforming of toluene for hydrogen production. Appl Catal A Gen 471:157–164. https://doi.org/10.1016/j.apcata.2013.11.032

    Article  CAS  Google Scholar 

  38. Oh G, Park SY, Seo MW et al (2019) Combined steam-dry reforming of toluene in syngas over CaNiRu/Al2O3 catalysts. Int J Green Energy 16:333–349. https://doi.org/10.1080/15435075.2019.1566729

    Article  CAS  Google Scholar 

  39. Oh G, Park SY, Seo MW et al (2016) Ni/Ru-Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar. Renew Energy 86:841–847. https://doi.org/10.1016/j.renene.2015.09.013

    Article  CAS  Google Scholar 

  40. Ashok J, Kawi S (2013) Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems. Int J Hydrogen Energy 38:13938–13949. https://doi.org/10.1016/j.ijhydene.2013.08.029

    Article  CAS  Google Scholar 

  41. Wang J, Cheng L, An W et al (2016) Boosting soot combustion efficiencies over CuO-CeO2 catalysts with a 3DOM structure. Catal Sci Technol 6:7342–7350. https://doi.org/10.1039/c6cy01366j

    Article  CAS  Google Scholar 

  42. Pandiyan A, Uthayakumar A, Lim C et al (2020) Validation of defect association energy on modulating oxygen ionic conductivity in low temperature solid oxide fuel cell. J Power Sources 480:229106. https://doi.org/10.1016/j.jpowsour.2020.229106

    Article  CAS  Google Scholar 

  43. Petkovich ND, Rudisill SG, Venstrom LJ et al (2011) Control of heterogeneity in nanostructured Ce1-xZrxO2 Binary oxides for enhanced thermal stability and water splitting activity. J Phys Chem C 115:21022–21033. https://doi.org/10.1021/jp2071315

    Article  CAS  Google Scholar 

  44. Mukai D, Tochiya S, Murai Y et al (2013) Structure and activity of Ni/La0.7Sr0.3AlO3-δ catalyst for hydrogen production by steam reforming of toluene. Appl Catal A Gen 464–465:78–86. https://doi.org/10.1016/j.apcata.2013.05.023

    Article  CAS  Google Scholar 

  45. Marinho ALA, Toniolo FS, Noronha FB et al (2021) Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2020.119459

    Article  Google Scholar 

  46. Alcalde-Santiago V, Davó-Quiñonero A, Lozano-Castelló D et al (2018) On the soot combustion mechanism using 3DOM ceria catalysts. Appl Catal B Environ 234:187–197. https://doi.org/10.1016/j.apcatb.2018.04.023

    Article  CAS  Google Scholar 

  47. Bensaid S, Piumetti M, Novara C et al (2016) Catalytic oxidation of CO and soot over Ce-Zr-Pr mixed oxides synthesized in a multi-inlet vortex reactor: effect of structural defects on the catalytic activity. Nanoscale Res Lett 11:1–14. https://doi.org/10.1186/s11671-016-1713-1

    Article  CAS  Google Scholar 

  48. Niu G, Hildebrandt E, Schubert MA et al (2014) Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon. ACS Appl Mater Interfaces 6:17496–17505. https://doi.org/10.1021/am502238w

    Article  PubMed  CAS  Google Scholar 

  49. Pandiyan A, Rajagopalan R, Tanveer WH et al (2018) Scalable lattice-strain in preferentially oriented acceptor-doped cerium oxide film and its impact on oxygen ion transport kinetics. Electrochim Acta 264:203–215. https://doi.org/10.1016/j.electacta.2018.01.097

    Article  CAS  Google Scholar 

  50. Oemar U, Li AM, Hidajat K et al (2014) Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3 catalyst. AIChE J 60:4190–4198. https://doi.org/10.1002/aic

    Article  Google Scholar 

  51. Zhang L, Meng J, Yao F et al (2018) Insight into the mechanism of the ionic conductivity for Ln-doped ceria (Ln = La, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, and Tm) through first-principles calculation. Inorg Chem 57:12690–12696. https://doi.org/10.1021/acs.inorgchem.8b01853

    Article  PubMed  CAS  Google Scholar 

  52. Piumetti M, Bensaid S, Russo N et al (2016) Investigations into nanostructured ceria-zirconia catalysts for soot combustion. Appl Catal B Environ 180:271–282. https://doi.org/10.1016/j.apcatb.2015.06.018

    Article  CAS  Google Scholar 

  53. Pu J, Luo Y, Wang N et al (2018) Ceria-promoted Ni@Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance. Int J Hydrogen Energy 43:3142–3153. https://doi.org/10.1016/j.ijhydene.2017.12.136

    Article  CAS  Google Scholar 

  54. Jurado L, Papaefthimiou V, Thomas S et al (2021) Low temperature toluene and phenol abatement as tar model molecules over Ni-based catalysts: influence of the support and the synthesis method. Appl Catal B Environ 297:120479. https://doi.org/10.1016/j.apcatb.2021.120479

    Article  CAS  Google Scholar 

  55. Duprez D (1992) Selective steam reforming of aromatic compounds on metal catalysts. Appl Catal A, Gen 82:111–157. https://doi.org/10.1016/0926-860X(92)85001-R

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22076077, 21577060), Jiangsu Science and Technology Department (BK20191256), and Analysis & Test Fund of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zezhi Chen or Huijuan Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Chen, Z., Gong, H. et al. Rare Earth (Gd, Pr and La) Promoted Three-Dimensional Ordered Macro/Mesoporous Ni/CeZr Catalysts for Low-Temperature Catalytic Steam Reforming of Toluene as Tar Model. Catal Lett 152, 3772–3784 (2022). https://doi.org/10.1007/s10562-022-03952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03952-1

Keywords

Navigation