Skip to main content
Log in

One Step Dimethyl Ether (DME) Synthesis from CO2 Hydrogenation over Hybrid Catalysts Containing Cu/ZnO/Al2O3 and Nano-Sized Hollow ZSM-5 Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The study has focused on the development of bifunctional catalytic materials for the direct DME synthesis from CO2/H2. The industrial Cu/ZnO/Al2O3 is used as the copper based catalyst for the first step of the methanol synthesis from CO2/H2. It will be combined with hollow nano-ZSM-5 zeolites with mesoporous shell as the acid catalyst of the second step the methanol dehydration to DME. The bifunctional materials will be tested in the direct DME synthesis from CO2/H2 under the following conditions: T = 225 °C, p = 30 bar, H2/CO2 = 3. Under our reaction conditions, CO was not observed, only the DME majority product (77.5%) and CH3OH (22.5%) were obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brake LD (1986) Preparation of dimethylether by catalytic dehydration of methanol. U.S. Patent Documents. 4:595

    Google Scholar 

  2. van Dijk CP (1998) Dimtehyl ether production and recovery from methanol. U.S. Patent Documents. 5:750

    Google Scholar 

  3. Fleisch TH, Basu A, Sills RA (2012) Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. J Nat Gas Sci Eng 9:94–107

    Article  CAS  Google Scholar 

  4. Bradford MCJ, Konduru MV, Fuentes DX (2003) Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process technol. 83(1–3):11–25

    Article  CAS  Google Scholar 

  5. Waugh K (1992) Methanol synthesis. Catal Today 15(1):51–75

    Article  CAS  Google Scholar 

  6. Tidona B, Koppold C, Bansode A, Urakawa A, Von Rohr PR (2013) CO2 hydrogenation to methanol at pressures up to 950bar. J Supercrit Fluids 78:70–77

    Article  CAS  Google Scholar 

  7. Ruland H, Song H, Laudenschleger D, Stürmer S, Schmidt S, He J et al (2020) CO2 Hydrogenation with Cu/ZnO/Al2O3: a Benchmark Study. Chem Cat Chem 12(12):3216–3222

    CAS  Google Scholar 

  8. Kim SM, Lee YJ, Bae JW, Potdar HS, Jun KW (2008) Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether. Appl Catal A Gen 348(1):113–120

    Article  CAS  Google Scholar 

  9. Osman AI, Abu-Dahrieh JK, McLaren M, Laffir F, Nockemann P, Rooney D (2017) A facile green synthetic route for the preparation of highly active γAl2O3 from aluminum foil waste. Sci Rep 7:3593

    Article  Google Scholar 

  10. Jiang S, Hwang JS, Jin T, Cai T, Cho W, Baek YS, Park SE (2004) Dehydration of methanol to dimethyl ether over ZSM-5 zeolite. Bull Korean Chem Soc 25(2):185–189

    Article  CAS  Google Scholar 

  11. Ge Q, Huang Y, Qiu F, Li S (1998) Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Appl Catal A Gen 167(1):23–30

    Article  CAS  Google Scholar 

  12. Brunetti A, Migliori M, Cozza D, Catizzone E, Giordano G, Barbieri G (2020) Methanol conversion to dimethyl ether in catalytic zeolite membrane reactors. ACS Sustain Chem Eng 8(28):10471–10479

    Article  CAS  Google Scholar 

  13. Pérez-Fortes M, Schöneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732

    Article  Google Scholar 

  14. Alper E, Orhan OY (2017) CO2 utilization: developments in conversion processes. Petroleum 3(1):109–126

    Article  Google Scholar 

  15. Roy S, Cherevotan A, Peter SC (2018) Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett 3(8):1938–1966

    Article  CAS  Google Scholar 

  16. Pérez-Fortes M, Tzimas E (2016) Techno-economic and environmental evaluation of CO2 utilisation for fuel production: synthesis of methanol and formic acid.

  17. Garcia-Trenco A, Martinez A (2012) Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: new insights into the role of zeolite acidity. Appl Catal A Gen 411–412:170–179

    Article  Google Scholar 

  18. Takeguchi T, Yanagisawa K, Inui T, Inoue M (2000) Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids. Appl Catal A Gen. 192(2):201–209

    Article  CAS  Google Scholar 

  19. Frusteri F, Cordaro M, Cannilla C, Bonura G (2015) Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl Catal B Envir 162:57–65

    Article  CAS  Google Scholar 

  20. Bonura G, Frusteri F, Cannilla C, Ferrante GD, Aloise A, Catizzone E et al (2016) Catalytic features of CuZnZr-zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction. Catal Today. 277:48–54

    Article  CAS  Google Scholar 

  21. Aguayo AT, Erenã J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106(1–4):265–270

    Article  CAS  Google Scholar 

  22. Li L, Mao D, Xiao J, Li L, Guo X, Yu J (2016) Facile preparation of highly efficient CuO-ZnO-ZrO2/HZSM-5 bifunctional catalyst for one-step CO2 hydrogenation to dimethyl ether: Influence of calcination temperature. Chem Eng Res and Des 111:100–108

    Article  CAS  Google Scholar 

  23. Liu R, Qin Z, Ji H, Su T (2013) Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system. Ind Eng Chem Res 52(47):16648–16655

    Article  CAS  Google Scholar 

  24. Fang X, Jia H, Zhang B, Li Y, Wang Y, Song Y et al (2021) A novel in situ grown Cu-ZnO-ZrO2/HZSM-5 hybrid catalyst for CO2 hydrogenation to liquid fuels of methanol and DME. J Environ Chem Eng. 9(4):105299

    Article  CAS  Google Scholar 

  25. Zhou X, Su T, Jiang Y, Qin Z, Ji H, Guo Z (2016) CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem Eng Sci 153:10–20

    Article  CAS  Google Scholar 

  26. Qin ZZ, Zhou XH, Su TM, Jiang YX, Ji HB (2016) Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts. Catal Commun 75:78–82

    Article  CAS  Google Scholar 

  27. Fu T, Qi R, Wang X, Wan W, Li Z (2017) Facile synthesis of nano-sized hollow ZSM-5 zeolites with rich mesopores in shell. Micr Meso Mater 250:43–46

    Article  CAS  Google Scholar 

  28. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. J Catal 230(1):140–149

    Article  CAS  Google Scholar 

  29. Khandan N, Kazemeini M, Aghaziarati M (2008) Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Appl Catal A Gen 349(1–2):6–12

    Article  CAS  Google Scholar 

  30. Ateka A, Pérez-Uriarte P, Sierra I, Ereña J, Bilbao J, Aguayo AT (2016) Regenerability of the CuO-ZnO-MnO/SAPO-18 catalyst used in the synthesis of dimethyl ether in a single step. Reac Kinet Mech Cat 119:655–670

    Article  CAS  Google Scholar 

  31. Şeker B, Dizaji AK, Balci V, Uzun A (2021) MCM-41-supported tungstophosphoric acid as an acid function for dimethyl ether synthesis from CO2 hydrogenation. Ren Ener 171:47–57

    Article  Google Scholar 

  32. Frusteri F, Bonura G, Cannilla C, Ferrante GD, Aloise A, Catizzone E et al (2015) Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Appl Catal B Environ 176–177:522–531

    Article  Google Scholar 

  33. Kornas A, Śliwa M, Ruggiero-Mikołajczyk M, Samson K, Podobiński J, Karcz R et al (2020) Direct hydrogenation of CO2 to dimethyl ether (DME) over hybrid catalysts containing CuO/ZrO2 as a metallic function and heteropolyacids as an acidic function. Reac Kinet Mech Cat 130:179–194

    Article  CAS  Google Scholar 

  34. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl Catal A Gen 149(2):289–301

    Article  CAS  Google Scholar 

  35. Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts. Appl Catal A Gen 276(1–2):251–255

    Article  CAS  Google Scholar 

  36. Ahouari H, Soualah A, Le Valant A, Pinard L, Pouilloux Y (2015) Hydrogenation of CO2 into hydrocarbons over bifunctional system Cu–ZnO/Al2O3 + HZSM-5: effect of proximity between the acidic and methanol synthesis sites. C R Chimie 18(12):1264–1269

    Article  CAS  Google Scholar 

  37. Bonnin A, Comparot JD, Pouilloux Y, Coupard V, Uzio D, Pinard L (2021) Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/ HZSM-5 catalysts. Appl Catal A Gen. 611:117971

    Article  Google Scholar 

  38. Tao Y, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125(20):6044–6045

    Article  CAS  Google Scholar 

  39. Batonneau-Gener I, Sachse A (2019) Determination of the exact microporous volume and BET surface area in hierarchical ZSM-5. J Phys Chem C. 123(7):4235–4242

    Article  CAS  Google Scholar 

  40. Hardenberg TAJ, Mertens L, Mesman P, Muller HC, Nicolaides CP (1992) A catalytic method for the quantitative-evaluation of crystallinites of ZSM-5 zeolite preparations. Zeolites 12(6):685–689

    Article  CAS  Google Scholar 

  41. Karge HG (1991) Comparative measurements on acidity of zeolites. Stud Surf Sci Catal 65:133–156

    Article  CAS  Google Scholar 

  42. Datka J, Gil B, Baran P (2003) Heterogeneity of OH groups in HZSM-5 zeolites: splitting of OH and OD bands in low-temperature IR spectra. Micr Meso Mater 58(3):291–294

    Article  CAS  Google Scholar 

  43. Rosenberg DJ, Anderson JA (2004) On the environment of the active sites in phosphate modified silica-zirconia acid catalysts. Catal Lett 94:109–113

    Article  CAS  Google Scholar 

  44. Sadowska K, Góra-Marek K, Datka J (2012) Hierarchic zeolites studied by IR spectroscopy: acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vib Spectrosc 63:418–425

    Article  CAS  Google Scholar 

  45. Bonura G, Cordaro M, Cannilla C, Mezzapica A, Spadaro L, Arena F, Frusteri F (2014) Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catal Today 228:51–57

    Article  CAS  Google Scholar 

  46. Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U (2007) The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl Catal A 328(2):174–182

    Article  CAS  Google Scholar 

  47. Frusteri F, Migliori M, Cannilla C, Frusteri L, Catizzone E, Aloise A et al (2017) Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. J of CO2 Utilization. 18:353–361

    Article  CAS  Google Scholar 

  48. Ordomsky VV, Cai M, Sushkevich V, Moldovan S, Ersen O, Lancelot C et al (2014) The role of external acid sites of ZSM-5 in deactivation of hybrid CuZnAl/ZSM-5 catalyst for direct dimethyl ether synthesis from syngas. Appl Catal A Gen 486:266–275

    Article  CAS  Google Scholar 

  49. Huang MH, Lee HM, Liang KC, Tzeng CC, Chen WH (2015) An experimental study on single-step dimethylether (DME) synthesis from hydrogen and carbon monoxide under various catalysts. Int J Hydr Ener 40:13583–13593

    Article  CAS  Google Scholar 

  50. Catizzone E, Bonura G, Migliori M, Braccio G, Frusteri F, Giordano G (2019) Direct CO2 -to-dimethyl ether hydrogenation over CuZnZr/zeolite hybrid catalyst: new evidence on the interaction between acid and metal sites. Ann Chim Sci Mat 43:141–149

    Article  Google Scholar 

  51. Ereña J, Sierra I, Olazar M, Gayubo AG, Aguayo AT (2008) Deactivation of a CuO-ZnO-Al2O3/γ-Al2O3 catalyst in the synthesis of dimethyl ether. Ind Eng Chem Res 47(7):2238–2247

    Article  Google Scholar 

  52. Weber-Stockbauer M, Gutiérrez OY, Bermejo-Deval R, Lercher JA (2019) The role of weak Lewis acid sites for methanol thiolatio. Catal Sci Tech. 9:255–520

    Article  Google Scholar 

  53. Akarmazyan SS, Panagiotopoulou P, Kambolis A, Papadopoulou C, Kondarides DI (2014) Methanol dehydration to dimethyl ether over Al2O3 catalysts. Appl Catal B Environ 145:136–148

    Article  CAS  Google Scholar 

  54. Osman AI, Abu-Dahrieh JK, Rooney DW, Thompson J, Halawy SA, Mohamed MA (2017) Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction. J Chem Technol Biotechnol 92(12):2952–2962

    Article  CAS  Google Scholar 

  55. Fu T, Wang Y, Li Z (2010) Surface-Protection-Induced controllable restructuring of pores and acid sites of the nano-zsm-5 catalyst and its influence on the catalytic conversion of methanol to hydrocarbons. Langmuir 36(14):3737–3749

    Article  Google Scholar 

  56. Yu DK, Fu ML, Yuan YH, Song YB, Chen JY, Fang YW (2016) One-step synthesis of hierarchical-structured ZSM-5 zeolite. J Fuel Chem Technol 44(11):1363–1369

    Article  CAS  Google Scholar 

  57. Rownaghi AA, Rezaei F, Stante M, Hedlund J (2012) Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl Catal B Environ 119–120:56–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smain Hocine.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krim, K., Sachse, A., Le Valant, A. et al. One Step Dimethyl Ether (DME) Synthesis from CO2 Hydrogenation over Hybrid Catalysts Containing Cu/ZnO/Al2O3 and Nano-Sized Hollow ZSM-5 Zeolites. Catal Lett 153, 83–94 (2023). https://doi.org/10.1007/s10562-022-03949-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03949-w

Keywords

Navigation