Skip to main content
Log in

Preparation, Characterization and Activity of CuMnCeOx/CHC Catalyst in Microwave Catalytic Combustion of Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The modification of cordierite honeycomb (CH) carrier is conducive to improve the catalytic activity of catalyst that applying in the treatment of real VOCs waste gas. A honeycombed calcium aluminum silicate hydrate (C–A–S–H) thin layer was self-assembled successfully by alkaline corrosion with supersaturated Ca(OH)2 and contacted robustly onto the CH surface (named as CHC) by chemical bond. CuMnCeOx/CHC catalyst was prepared and applied in microwave catalytic combustion of toluene to check the catalytic activity in this work. Compared with CuMnCeOx/CH catalyst, CuMnCeOx/CHC catalyst exhibited a higher catalytic capacity and the removal rate of toluene reached 99%, which was higher than 75% of CuMnCeOx/CH catalyst under same reaction conditions of toluene initial concentration 1000 mg m−3, air flow 0.12 m3 h−1 and bed temperature 200 °C. Based on SEM, BET, XRD, XPS, UV-Raman, H2-TPR and NH3-TPD characterizations, it showed clearly that honeycombed C–A–S–H thin layer made CuMnCeOx active particles with smaller size more uniformly embedded into the pores of itself to hinder effectively the agglomeration of active particles in reaction. The valence reversible conversion of Cu+/Cu2+, Mn2+/Mn3+/Mn4+ and Ce3+/Ce4+ and total valence increase of CuMnCeOx produced abundant oxygen vacancies on the catalyst surface and simultaneously improved the transformation of surface adsorbed oxygen (Oads) to lattice oxygen (Olatt). Toluene was oxidized completely by Oads and Olatt species onto the active sites and “hot spots” under microwave irradiation that following both L–H mechanism and MvK mechanism. The research work lays down a theoretical basis for the preparation of highly effective catalyst and further application in the treatment of industrial VOCs waste gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Elser M, Huang R, Wolf R, Slowik J, Wang Q, Canonaco F, Li G, Bozzetti C, Daellenbach K, Huang Y (2015) New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmos Chem Phys 16:3207–3225

    Article  Google Scholar 

  2. Cao J, Shen Z, Chow J, Watson J, Lee S, Tie X, Ho K, Wang G, Han Y (2012) Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J Air Waste Manag Assoc 62(10):1214–1226

    Article  PubMed  CAS  Google Scholar 

  3. Dumanoglu Y, Kara M, Altiok H, Odabasi M, Elbir T, Bayram A (2014) Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos Environ 98:168–178

    Article  CAS  Google Scholar 

  4. Zhang X, Xue Z, Li H, Yan L, Yang Y, Wang Y, Duan J, Li L, Chai F, Cheng M (2017) Ambient volatile organic compounds pollution in China. J Environ Sci 55:69–75

    Article  CAS  Google Scholar 

  5. Gong Y, Wei Y, Cheng J, Jiang T, Chen L, Xu B (2017) Health risk assessment and personal exposure to volatile organic compounds (VOCs) in metro carriages—a case study in Shanghai, China. Sci Total Environ 574:1432–1438

    Article  PubMed  CAS  Google Scholar 

  6. Kamal M, Razzak S, Hossain M (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134

    Article  CAS  Google Scholar 

  7. Morales M, Agüero FN, Cadus L (2013) Catalytic combustion of n-hexane over alumina supported Mn–Cu–Ce catalysts. Catal Lett 143:1003–1011

    Article  CAS  Google Scholar 

  8. Bo L, Sun S (2019) Microwave-assisted catalytic oxidation of gaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst. Front Chem Sci Eng 13(2):385–392

    Article  CAS  Google Scholar 

  9. Chau J, Tellez C, Yeung K, Ho K (2000) The role of surface chemistry in zeolite membrane formation. J Membr Sci 164(1–2):257–275

    Article  Google Scholar 

  10. Zhao D, Gao Y, Nie S, Liu Z, Wang F, Liu P, Hu S (2018) Self-assembly of honeycomb-like calcium–aluminum–silicate–hydrate (C–A–S–H) on ceramsite sand and its application in photocatalysis. Chem Eng J 344:583–593

    Article  CAS  Google Scholar 

  11. Zhao D, Liu P, Wang F, Hu C, Hu S (2020) Versatile surface modification of ceramsite via honeycomb calcium–aluminum–silicate–hydrate and its functionalization by 3-thiocyanatopropyltriethoxysilane for enhanced cadmium (II) removal. J Wuhan Univ Technol 35(1):71–80

    Article  CAS  Google Scholar 

  12. Salker A, Weisweiler W (2000) Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions. Appl Catal A 203(2):221–229

    Article  CAS  Google Scholar 

  13. Viallis H, Faucon P, Petit J, Nonat A (1999) Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (CSH). J Phys Chem B 103(25):5212–5219

    Article  CAS  Google Scholar 

  14. Idakiev V, Dimitrov D, Tabakova T, Ivanov K, Yuan Z, Su B (2015) Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chin J Catal 4:579–587

    Article  Google Scholar 

  15. Lu H, Zhou Y, Huang H, Zhang B, Chen Y (2011) In-situ synthesis of monolithic Cu–Mn–Ce/cordierite catalysts towards VOCs combustion. J Rare Earth 29(009):855–860

    Article  CAS  Google Scholar 

  16. Murugan B, Ramaswamy A, Srinivas D, Gopinath C, Ramaswamy V (2005) Nature of manganese species in Ce1xMnxO2δ solid solutions synthesized by the solution combustion route. Chem Mater 17(15):3983–3993

    Article  CAS  Google Scholar 

  17. Yu D, Liu Y, Wu Z (2010) Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol–gel method. Catal Commun 11(8):788–791

    Article  CAS  Google Scholar 

  18. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y (2014) Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method. J Mater Chem A 2(8):2544–2554

    Article  CAS  Google Scholar 

  19. Tang W, Wu X, Liu G, Li S, Li D, Li W, Chen Y (2015) Preparation of hierarchical layer-stacking Mn–Ce composite oxide for catalytic total oxidation of VOCs. J Rare Earth 33(1):62–69

    Article  CAS  Google Scholar 

  20. She W, Qi T, Cui M, Yang P, Seik Weng N, Li W, Li G (2018) High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl Mater Inter 10:14698–14733

    Article  CAS  Google Scholar 

  21. Chang L, Sasirekha N, Chen Y, Wang W (2006) Preferential oxidation of CO in H2 stream over Au/MnO2–CeO2 catalysts. Ind Eng Chem Res 45(14):4927–4935

    Article  CAS  Google Scholar 

  22. López J, Gilbank A, García T, Solsona B, Agouram S, Torrente-Murciano L (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B Environ 174–175:403–412

    Article  Google Scholar 

  23. Ren C, Zhang Z, Yang R (2019) The construction of three-dimensionally ordered macroporous (Fe, Zn, Cu, Co)/LaMnO3 with controllable gelation rate and their catalytic combustion properties. J Porous Mat 26(6):1649–1656

    Article  CAS  Google Scholar 

  24. Wang X, Kang Q, Li D (2009) Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl Catal B Environ 86(3–4):166–175

    CAS  Google Scholar 

  25. Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “Redox-Precipitation” route. Chem Mater 19:2269–2276

    Article  CAS  Google Scholar 

  26. Rao T, Shen M, Jia L, Hao J, Wang J (2007) Oxidation of ethanol over Mn–Ce–O and Mn–Ce–Zr–O complex compounds synthesized by sol–gel method. Catal Commun 8(11):1743–1747

    Article  CAS  Google Scholar 

  27. Chen Y, Zheng H, Guo Z, Zhou C, Wang C, Borgna A, Yang Y (2011) Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity. J Catal 38(30):2269–2276

    Google Scholar 

  28. Zhang X, Peng R, Zhao M, Ye D (2017) Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal. Appl Surf Sci 405:20–28

    Article  Google Scholar 

  29. Hou D, Li T, Wang P (2018) Molecular dynamics study on the structure and dynamics of NaCl solution transport in the nanometer channel of CASH gel. ACS Sustain Chem Eng 6(7):9498–9509

    Article  CAS  Google Scholar 

  30. Parres-Esclapez S, Such-BasañEz I, Illán-Gómez MJ, Lecea SMD, Bueno-López A (2010) Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N2O decomposition mechanism on Rh/CeO2 and Rh/γ-Al2O3 catalysts. J Catal 276(2):390–401

    Article  CAS  Google Scholar 

  31. Wu Z, Li M, Howe J, Meyer H, Overbury S (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26(21):16595–16606

    Article  PubMed  CAS  Google Scholar 

  32. Krishna K, Bueno-López A, Makkee M, Moulijn J (2007) Potential rare-earth modified CeO2 catalysts for soot oxidation: Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO+O2. Appl Catal B Environ 75(3–4):210–220

    Article  CAS  Google Scholar 

  33. Li J, Zhu P, Zhou R (2011) Effect of the preparation method on the performance of CuO–MnOx–CeO2 catalysts for selective oxidation of CO in H2-rich streams. J Power Sources 196(22):9590–9598

    Article  CAS  Google Scholar 

  34. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2004) Structural features and catalytic properties of Pt/CeO2 catalysts prepared by modified reduction-deposition techniques. Catal Lett 97(3–4):163–169

    Article  CAS  Google Scholar 

  35. Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Wgrzyn A (2000) Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part II temperature-programmed studies. Catal Lett 70(1):51–56

    Article  CAS  Google Scholar 

  36. Deng W, Tang Q, Huang S, Zhang L, Guo L (2020) Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides. Appl Catal B Environ 278:119336

    Article  CAS  Google Scholar 

  37. Li W, Liu Z, Liu R (2016) Rod-like CuMnOx transformed from the mixed oxide particles by alkaline hydrothermal treatment as a novel catalyst for catalytic combustion of toluene. Phys Chem Chem Phys 10:1039–1044

    Google Scholar 

  38. Li X, Li X, Zeng X, Zhu T (2019) Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeO mixed oxides for propane combustion. Appl Catal A 572:61–70

    Article  CAS  Google Scholar 

  39. Arandiyan H, Dai H, Ji K, Sun H, Zhao Y, Li J (2015) Enhanced catalytic efficiency of Pt nanoparticles supported on 3D ordered macro-/mesoporous Ce0.6Zr0.3Y0.1O2 for methane combustion. Small 11:2365–2365

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the innovative research team of Xi’an University of Architecture and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longli Bo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Bo, L., Li, M. et al. Preparation, Characterization and Activity of CuMnCeOx/CHC Catalyst in Microwave Catalytic Combustion of Toluene. Catal Lett 152, 3795–3806 (2022). https://doi.org/10.1007/s10562-022-03942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03942-3

Keywords

Navigation