Skip to main content
Log in

Direct and Highly Selective Conversion of Bioethanol to Propylene Over Y-CeO2 and Zeolite Beta Composite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Y-CeO2/Beta composites with different Beta contents were prepared by an incipient impregnation method, followed by calcination at 650 °C. The Y-CeO2/Beta composites display excellent catalytic performance in the conversion of ethanol to propylene. In particular, the Y-CeO2/10%Beta catalyst with 10% zeolite Beta affords the highest propylene yield of 64.1%. The probe reactions suggest that the role of zeolite Beta in the Y-CeO2/Beta composite catalyst is to promote conversion of the acetone intermediate generated on Y-CeO2 oxide to 2-propanol via the MPV reaction as well as the subsequent dehydration of resulting 2-propanol to propylene, thereby enhancing the selective conversion of ethanol to propylene dramatically.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Trends Biotechnol 24:549–556

    Article  Google Scholar 

  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  3. Sun J, Wang Y (2014) ACS Catal 4:1078–1090

    Article  CAS  Google Scholar 

  4. Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77

    Article  CAS  Google Scholar 

  5. Blay V, Louis B, Miravalles R, Yokoi T, Peccatiello KA, Clough M, Yilmaz B (2017) ACS Catal 7:6542–6566

    Article  CAS  Google Scholar 

  6. Song Z, Takahashi A, Mimura N, Fujitani T (2009) Catal Lett 131:364–369

    Article  CAS  Google Scholar 

  7. Goto D, Harada Y, Furumoto Y, Takahashi A, Fujitani T, Oumi Y, Sadakane M, Sano T (2010) Appl Catal A Gen 383:89–95

    Article  CAS  Google Scholar 

  8. Song Z, Takahashi A, Nakamura I, Fujitani T (2010) Appl Catal A Gen 384:201–205

    Article  CAS  Google Scholar 

  9. Bi JD, Liu M, Song CS, Wang XS, Guo XW (2011) Appl Catal B Environ 107:68–76

    Article  CAS  Google Scholar 

  10. Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T (2011) Appl Catal A Gen 399:262–267

    Article  CAS  Google Scholar 

  11. Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Appl Catal A Gen 423–424:162–167

    Article  Google Scholar 

  12. Meng T, Mao DS, Guo QS, Lu GZ (2012) Catal Commun 21:52–57

    Article  CAS  Google Scholar 

  13. Huangfu JJ, Mao DS, Zhai XL, Guo QS (2016) Appl Catal A Gen 520:99–104

    Article  CAS  Google Scholar 

  14. Zhang N, Mao DS, Zhai XL (2017) Fuel Process Technol 167:50–60

    Article  CAS  Google Scholar 

  15. Xia W, Wang JG, Wang LX, Qian C, Ma C, Huang YX, Fan Y, Hou MD, Chen K (2021) Appl Catal B Environ 294:120242

    Article  CAS  Google Scholar 

  16. Iwamoto M, Mizuno S, Tanaka M (2013) Chem Eur J 19:7214–7220

    Article  CAS  Google Scholar 

  17. Hayashi F, Tanaka M, Lin D, Iwamoto M (2014) J Catal 316:112–120

    Article  CAS  Google Scholar 

  18. Xia W, Wang FF, Mu XC, Chen K (2017) Fuel Process Technol 166:140–145

    Article  CAS  Google Scholar 

  19. Xia W, Wang FF, Mu XC, Chen K (2017) Catal Commun 90:10–13

    Article  CAS  Google Scholar 

  20. Xue FQ, Miao CX, Yue YH, Hua WM, Gao Z (2017) Green Chem 19:5582–5590

    Article  CAS  Google Scholar 

  21. Xue FQ, Miao CX, Yue YH, Hua WM, Gao Z (2019) Fuel Process Technol 186:110–115

    Article  CAS  Google Scholar 

  22. Xu LL, Zhao RR, Zhang WP (2020) Appl Catal B Environ 279:119389

    Article  CAS  Google Scholar 

  23. Speight JG (2004) Lange’s Handbook of Chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  24. Xu B, Zhang Q, Yuan S, Zhang M, Ohno T (2015) Appl Catal B Environ 164:120–127

    Article  CAS  Google Scholar 

  25. Hernández-Alonso MD, Hungría AB, Martínez-Arias A, Fernández-García M, Coronado JM, Conesa JC, Soria J (2004) Appl Catal B Environ 50:167–175

    Article  Google Scholar 

  26. Liyanage AD, Perera SD, Tan K, Chabal Y, Balkus KJ Jr (2014) ACS Catal 4:577–584

    Article  CAS  Google Scholar 

  27. He D, Chen D, Hao H, Yu J, Liu J, Lu J, Liu F, Wan G, He S, Luo Y (2016) Appl Surf Sci 390:959–967

    Article  CAS  Google Scholar 

  28. Ilieva L, Petrova P, Pantaleo G, Zanella R, Liotta LF, Georgiev V, Boghosian S, Kaszkur Z, Sobczak JW, Lisowski W, Venezia AM, Tabakova T (2016) Appl Catal B Environ 188:154–168

    Article  CAS  Google Scholar 

  29. Song J, Sun Y, Ba R, Huang S, Zhao Y, Zhang J, Sun Y, Zhu Y (2015) Nanoscale 7:2260–2264

    Article  CAS  Google Scholar 

  30. Xu J, Zhang Y, Xu X, Fang X, Xi R, Liu Y, Zheng R, Wang X (2019) ACS Catal 9:4030–4045

    Article  CAS  Google Scholar 

  31. Fan YQ, Miao CX, Yue YH, Hua WM, Gao Z (2021) Catalysts 11:388

    Article  CAS  Google Scholar 

  32. Klomp D, Maschmeyer T, Hanefeld U, Peters JA (2004) Chem Eur J 10:2088–2093

    Article  CAS  Google Scholar 

  33. Cheralathan KK, Palanichamy M, Murugesan V (2004) Appl Catal A Gen 263:219–225

    Article  CAS  Google Scholar 

  34. Jansen JC, Creyghton EJ, Njo SL, van Koningsveld H, van Bekkum H (1997) Catal Today 38:205–212

    Article  CAS  Google Scholar 

  35. Marques JP, Gener I, Ayrault P, Lopes JM, Ribeiro FR, Guisnet M (2004) Chem Commun 40:2290–2291

    Article  Google Scholar 

  36. Mihailova B, Valtchev V, Mintova S, Faust AC, Petkov N, Bein T (2005) Phys Chem Chem Phys 7:2756–2763

    Article  CAS  Google Scholar 

  37. Wright PA, Zhou W, Pérez-Pariente J, Arranz M (2005) J Am Chem Soc 127:494–495

    Article  CAS  Google Scholar 

  38. Parker WO, de Angelis A, Jr FC, Millini R, Perego C, Zanardi S (2010) J Phys Chem C 114:8459–8468

    Article  CAS  Google Scholar 

  39. van der Waal JC, Creyghton EJ, Kunkeler PJ, Tan K, van Bekkum H (1997) Top Catal 4:261–268

    Article  Google Scholar 

  40. Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ribeiroa FR, Guisnet M (2003) Micropor Mesopor Mater 60:251–262

    Article  CAS  Google Scholar 

  41. Wang Y, Yokoi T, Namba S, Tatsumi T (2016) Catalysts 6:8

    Article  Google Scholar 

  42. Matheus CRV, Chagas LH, Gonzalez GG, Aguiar EFS, Appel LG (2018) ACS Catal 8:7667–7678

    Article  Google Scholar 

  43. Hasan MA, Zaki MI, Pasupulety L (2003) Appl Catal A Gen 243:81–92

    Article  CAS  Google Scholar 

  44. Bueno-López A, Krishna K, Makkee M, Moulijn JA (2005) J Catal 230:237–248

    Article  Google Scholar 

  45. Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73

    Article  CAS  Google Scholar 

  46. Liu C, Sun J, Smith C, Wang Y (2013) Appl Catal A Gen 467:91–97

    Article  CAS  Google Scholar 

  47. Sun J, Baylon RA, Liu C, Mei D, Martin KJ, Venkitasubramanian P, Wang Y (2016) J Am Chem Soc 138:507–517

    Article  CAS  Google Scholar 

  48. Meinhold RH, Bibby DM (1990) Zeolites 10:146–150

    Article  CAS  Google Scholar 

  49. Barbera K, Sorensen S, Bordiga S, Skibsted J, Fordsmand H, Beato P, Janssens TVW (2012) Catal Sci Technol 2:1196–1206

    Article  CAS  Google Scholar 

  50. Nagy JB, Gabelica Z, Debras G, Derouane EG, Gilson JP, Jacobs PA (1984) Zeolites 4:133–139

    Article  CAS  Google Scholar 

  51. Deng F, Du YR, Ye CH, Wang JZ, Ding TT, Li HX (1995) J Phys Chem 99:15208–15214

    Article  CAS  Google Scholar 

  52. Li X, Zhang W, Li X, Liu S, Huang H, Han X, Xu L, Bao X (2009) J Phys Chem C 113:8228–8233

    Article  CAS  Google Scholar 

  53. Wang S, Huang Z, Luo Y, Wang J, Fang Y, Hua W, Yue Y, Xu H, Shen W (2020) Catal Sci Technol 10:6562–6572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 22072027 and 91645201), the Science and Technology Commission of Shanghai Municipality (13DZ2275200) and the Shanghai Research Institute of Petrochemical Technology SINOPEC.

Author information

Authors and Affiliations

Authors

Contributions

HJ: preparation, characterization, catalytic tests, writing—original draft. YY: methodology, data analysis. CM: conceptualization, supervision. CT: preparation, characterization. WH: conceptualization, supervision, writing—review & editing. ZG: conceptualization.

Corresponding authors

Correspondence to Changxi Miao or Weiming Hua.

Ethics declarations

Conflict of interest

None of authors have any conflict of interest to be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Yue, Y., Miao, C. et al. Direct and Highly Selective Conversion of Bioethanol to Propylene Over Y-CeO2 and Zeolite Beta Composite. Catal Lett 153, 230–238 (2023). https://doi.org/10.1007/s10562-022-03939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03939-y

Keywords

Navigation