Skip to main content
Log in

PPy/WO3 Co-modified TiO2 Photoanode Based Photocatalytic Fuel Cell for Degradation of Rhodamine B and Electricity Generation Under Visible Light Illumination

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to inhibit rapid recombination of electron–hole pairs of photoanode and expand its light response wavelength, PPy-14%/WO3/TiO2/Ti photoanode was prepared. The maximum photocurrent density is 2.31 mA·cm−2, which is 1.76 times higher than that of WO3/TiO2/Ti at 1.1 V (vs. SCE). The maximum power density, phontocurrent density and Rhodamine B degradation rate of photocatalytic fuel cell (PFC) with PPy-14%/WO3/TiO2/Ti photoanode and Cu cathode are 25.48 μW·cm−2, 0.25 mA·cm−2 and 88.5%, respectively. The excellent performance is mainly due to the good carrier migration rate of PPy and the synergistic effect of PPy/WO3/TiO2/Ti ternary hybrid electrode, so that photogenerated electrons and holes can accumulate in the conduction band of WO3 and HOMO of PPy, respectively. This not only expands the light absorption range and enhances the light absorption intensity, but also improves the separation of electron–hole pairs, and finally significantly enhances the Rhodamine B degradation and electricity generation performance of PFC.

Graphical Abstract

In order to inhibit rapid recombination of electron–hole pairs of photoanode and expand its light response wavelength, PPy-14%/WO3/TiO2/Ti photoanode was prepared. The excellent performance is mainly due to the good carrier migration rate of PPy and the synergistic effect of PPy/WO3/TiO2/Ti ternary hybrid electrode, so that photogenerated electrons and holes can accumulate in the conduction band of WO3 and HOMO of PPy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Antolini E (2019) Photoelectrocatalytic fuel cells and photoelectrode microbial fuel cells for wastewater treatment and power generation. J Environ Chem Eng 7(4):103241

    CAS  Google Scholar 

  2. Shen R, He K, Zhang A et al (2021) In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B 291:120104

    CAS  Google Scholar 

  3. Sui M, Dong Y, Wang Z et al (2017) A biocathode-driven photocatalytic fuel cell using an Ag-doped TiO2/Ti mesh photoanode for electricity generation and pollutant degradation. J Photochem Photobiol, A 348:238–245

    CAS  Google Scholar 

  4. Tang S, Li N, Yuan D et al (2019) Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: Simultaneous dye removal and electricity generation. Chemosphere 234:658–667

    PubMed  CAS  Google Scholar 

  5. Kee M-W, Lam S-M, Sin J-C et al (2020) Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation. J Photochem Photobiol A 391:112353

    CAS  Google Scholar 

  6. Lam SM, Sin JC, Lin H et al (2020) Greywater and bacteria removal with synchronized energy production in photocatalytic fuel cell based on anodic TiO2/ZnO/Zn and cathodic CuO/Cu. Chemosphere 245:125565

    PubMed  CAS  Google Scholar 

  7. Bojinova A, Dushkin C (2011) Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. React Kinet Mech Catal 103(1):239–250

    CAS  Google Scholar 

  8. Žerjav G, Arshad MS, Djinović P et al (2017) Electron trapping energy states of TiO2–WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl Catal B 209:273–284

    Google Scholar 

  9. Dozzi MV, Marzorati S, Longhi M et al (2016) Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Appl Catal B 186:157–165

    CAS  Google Scholar 

  10. Bai J, Wang R, Li Y et al (2016) A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J Hazard Mater 311:51–62

    PubMed  CAS  Google Scholar 

  11. Lu Y, Chu Y, Zheng W et al (2019) Significant tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT photocathode. Electrochim Acta 320:134617

    CAS  Google Scholar 

  12. Liu L, Hu T, Dai K et al (2021) A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin J Catal 42(1):46–55

    CAS  Google Scholar 

  13. Rabé K, Liu L, Nahyoon NA et al (2019) Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0(1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation. Electrochim Acta 298:430–439

    Google Scholar 

  14. Rabé K, Liu L, Nahyoon NA et al (2019) Visible-light photocatalytic fuel cell with Z-scheme g-C3N4/Fe0/TiO2 anode and WO3 cathode efficiently degrades berberine chloride and stably generates electricity. Sep Purif Technol 212:774–782

    Google Scholar 

  15. Wang J, Wang G, Cheng B et al (2021) Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal 42(1):56–68

    CAS  Google Scholar 

  16. Luan P, Xie M, Fu X et al (2015) Improved photoactivity of TiO2–Fe2O3 nanocomposites for visible-light water splitting after phosphate bridging and its mechanism. Phys Chem Chem Phys 17(7):5043–5050

    PubMed  CAS  Google Scholar 

  17. Bai J, Shen R, Chen W et al (2022) Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem Eng J 429:132587

    CAS  Google Scholar 

  18. El-Yazeed WSA, Ahmed AI (2019) Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorg Chem Commun 105:102–111

    Google Scholar 

  19. Baia L, Orbán E, Fodor S et al (2016) Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process 42:66–71

    CAS  Google Scholar 

  20. Hunge YM, Mahadik MA, Moholkar AV et al (2017) Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason Sonochem 35:233–242

    PubMed  CAS  Google Scholar 

  21. Kaplan SS, Sonmez MS (2020) Single step solution combustion synthesis of hexagonal WO3 powders as visible light photocatalysts. Mater Chem Phys 240:122152

    CAS  Google Scholar 

  22. Ki SJ, Park Y-K, Kim J-S et al (2019) Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate. Chem Eng J 377:120087

    CAS  Google Scholar 

  23. Dohŀeviŀ-Mitroviŀ Z, Stojadinoviŀ S, Lozzi L et al (2016) WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Mater Res Bull 83:217–224

    Google Scholar 

  24. Pirzada BM, Mehraj O, Bhat SA et al (2018) Efficient visible-light-driven photocatalytic activity and enhanced charge transfer properties over Mo-doped WO3/TiO2 nanocomposites. J Environ Chem Eng 6(2):3204–3212

    CAS  Google Scholar 

  25. Deivanayaki S, Ponnuswamy V, Mariappan R et al (2013) Synthesis and characterization of polypyrrole/TiO2 composites by chemical oxidative method. Optik 124(12):1089–1091

    CAS  Google Scholar 

  26. He R, Chen R, Luo J et al (2021) Fabrication of graphene quantum dots modified BiOI/PAN flexible fiber with enhanced photocatalytic activity. Acta Physico Chimica Sinica 37(6):2011022

    Google Scholar 

  27. Sheng K, Fan L-M, Tian X-F et al (2019) Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes. Sci China Chem 63(2):182–186

    Google Scholar 

  28. Yuan X, Kobylanski MP, Cui Z et al (2020) Highly active composite TiO2-polypyrrole nanostructures for water and air depollution under visible light irradiation. J Environ Chem Eng 8(5):104178

    CAS  Google Scholar 

  29. Li X, Wang J, Hu Z et al (2018) In situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO2/SiO2 membranes. Chin Chem Lett 29(1):166–170

    CAS  Google Scholar 

  30. Belated C, Haine N, Benabdelghani Z et al (2014) Photocatalytic hydrogen evolution on the hetero-system polypyrrol/TiO2 under visible light. Int J Hydrogen Energy 39(31):17533–17539

    Google Scholar 

  31. Zhang J, Pang Z, Sun Q et al (2020) TiO2 nanotube array modified with polypyrrole for efficient photoelectrocatalytic decolorization of methylene blue. J Alloys Compd 820:153128

    CAS  Google Scholar 

  32. Jia Y, Xiao P, He H et al (2012) Photoelectrochemical properties of polypyrrole/TiO2 nanotube arrays nanocomposite under visible light. Appl Surf Sci 258(17):6627–6631

    CAS  Google Scholar 

  33. Balis N, Dracopoulos V, Antoniadou M et al (2012) One-step electrodeposition of polypyrrole applied as oxygen reduction electrocatalyst in photoactivated fuel cells. Electrochim Acta 70:338–343

    CAS  Google Scholar 

  34. Li K, Zhang H, Tang T et al (2016) Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell. J Power Sources 324(30):368–377

    CAS  Google Scholar 

  35. He G-H, He G-L, Li A-J et al (2014) Synthesis and visible light photocatalytic behavior of WO3 (core)/Bi2WO6 (shell). J Mol Catal A: Chem 385:106–111

    CAS  Google Scholar 

  36. Liu Y, Xu Y, Zhong D et al (2021) Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity. Chem Phys 542:111053

    CAS  Google Scholar 

  37. Liu Y, Xu Y, Zhong D et al (2021) BiVO4@PDA/TiO2/Ti photoanode with polydopamine as electron transfer mediator for efficient visible-light driven photocatalytic fuel cell. Colloids Surf A 612:125941

    CAS  Google Scholar 

  38. Liu Y, Xu Y, Zhong D et al (2021) Core-shell BiVO4@Polythiophene co-modified TiO2 as an efficient photoanode for visible-light responsive photocatalytic fuel cell. Optic Mater 111:110563

    CAS  Google Scholar 

  39. Li S, Wang C, Cai M et al (2022) Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction. Chem Eng J 428:131158

    CAS  Google Scholar 

  40. Sun L, Zhou Y, Li X et al (2020) Thermo-responsive functionalized PNIPAM@Ag/Ag3PO4/CN-heterostructure photocatalyst with switchable photocatalytic activity. Chin J Catal 41(10):1573–1588

    CAS  Google Scholar 

  41. Wu Y, Tao L, Zhao J et al (2015) TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Res Chem Intermed 42(4):3609–3624

    Google Scholar 

  42. Zheng JY, Song G, Hong J et al (2014) Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des 14(11):6057–6066

    CAS  Google Scholar 

  43. Tan J, Zhang Z, He Y et al (2017) Electrochemical synthesis of conductive, superhydrophobic and adhesive polypyrrole-polydopamine nanowires. Synth Met 234:86–94

    CAS  Google Scholar 

  44. Li K, Zhang H, Ma Y et al (2019) Nanostructured polypyrrole cathode based dual rotating disk photo fuel cell for textile wastewater purification and electricity generation. Electrochim Acta 303:329–340

    CAS  Google Scholar 

  45. Firat YE, Peksoz A (2017) Efficiently two-stage synthesis and characterization of CuSe/Polypyrrole composite thin films. J Alloy Compd 727:177–184

    CAS  Google Scholar 

  46. Wu J, Li Q, Fan L et al (2008) High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J Power Sources 181(1):172–176

    CAS  Google Scholar 

  47. Zhao Z, Zhang W, Shen X et al (2018) Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation. J Photochem Photobiol A 358:246–255

    CAS  Google Scholar 

  48. Xie J, Zhou Z, Lian Y et al (2014) Simple preparation of WO3–ZnO composites with UV–Vis photocatalytic activity and energy storage ability. Ceram Int 40(8):12519–12524

    CAS  Google Scholar 

  49. Fang W, Jiang X, Luo H et al (2018) Synthesis of graphene/SiO2@polypyrrole nanocomposites and their application for Cr (VI) removal in aqueous solution. Chemosphere 197:594–602

    PubMed  CAS  Google Scholar 

  50. Fang M-M, Shao J-X, Huang X-G et al (2020) Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation. J Mater Sci Technol 56:133–142

    Google Scholar 

  51. He K, Xie J, Luo X et al (2017) Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin J Catal 38(2):240–252

    CAS  Google Scholar 

  52. Adhikari S, Sarath Chandra K, Kim D-H et al (2018) Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv Powder Technol 29(7):1591–1600

    CAS  Google Scholar 

  53. Patil SM, Deshmukh SP, More KV et al (2019) Sulfated TiO2/WO3 nanocomposite: An efficient photocatalyst for degradation of congo red and methyl red dyes under visible light irradiation. Mater Chem Phys 225:247–255

    CAS  Google Scholar 

  54. Hernández-Rodríguez E et al (2013) Effect of electrode type in the resistive switching behaviour of TiO2 thin films. J Phys D 46(4):045103

    Google Scholar 

  55. Hunge YM (2017) Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram Int 43(13):10089–10096

    CAS  Google Scholar 

  56. Banerjee W, Maikap S, Lai CS et al (2012) Formation polarity dependent improved resistive switching memory characteristics using nanoscale (13 nm) core-shell IrOx nano-dots. Nanoscale Res Lett 7(1):194

    PubMed  PubMed Central  Google Scholar 

  57. Norouzi A, Nezamzadeh-Ejhieh A, Fazaeli R (2021) A Copper(I) oxide-zinc oxide nano-catalyst hybrid: Brief characterization and study of the kinetic of its photodegradation and photomineralization activities toward methylene blue. Mater Sci Semiconduct Process 122:105495

    CAS  Google Scholar 

  58. Yuan X, Floresyona D, Aubert PH et al (2018) Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and bisible light. Appl Catal B 242:284–292

    Google Scholar 

  59. Senthilkumar K, Sumisha A, Krishnan H (2020) Performance of tungsten oxide/polypyrrole composite as cathode catalyst in single chamber microbial fuel cell. J Environ Chem Eng 8(6):104520

    Google Scholar 

  60. Zhang C, Li Q, Li J (2010) Synthesis and characterization of polypyrrole/TiO2 composite by in situ polymerization method. Synth Met 160(15–16):1699–1703

    CAS  Google Scholar 

  61. Rabé K, Liu L, Nahyoon NA et al (2019) Fabrication of high efficiency visible light Z-scheme heterostructure photocatalyst g-C3N4/Fe0(1%)/TiO2 and degradation of rhodamine B and antibiotics. J Taiwan Inst Chem Eng 96:463–472

    Google Scholar 

  62. Grbić B, Radić N, Stojadinović S et al (2014) TiO2/WO3 photocatalytic composite coatings prepared by spray pyrolysis. Surf Coat Technol 258:763–771

    Google Scholar 

  63. Jing G, Benz D, Nguyen T et al (2020) Tuning the Photocatalytic Activity of TiO2 nanoparticles by ultrathin SiO2 films grown by low-temperature atmospheric pressure atomic layer deposition. Appl Surf Sci 530:147244

    Google Scholar 

  64. Xie S, Ouyang K, Ye X (2018) A novel visible-light responsive photocatalytic fuel cell with a heterostructured BiVO4/WO3 photoanode and a Pt/C air-breathing cathode. J Colloid Interface Sci 532:758–766

    PubMed  CAS  Google Scholar 

  65. He Y, Yuan R, Leung MKH (2019) Highly efficient AgBr/BiVO4 photoanode for photocatalytic fuel cell. Mater Lett 236:394–397

    CAS  Google Scholar 

  66. Deng B, Fu S, Zhang Y et al (2018) Simultaneous pollutant degradation and power generation in visible-light responsive photocatalytic fuel cell with an Ag-TiO2 loaded photoanode. Nano-Struct Nano-Objects 15:167–172

    CAS  Google Scholar 

  67. Ong YP, Ho LN, Ong SA et al (2019) A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of reactive red 120 and electricity generation. Chemosphere 219:277–285

    PubMed  CAS  Google Scholar 

  68. He Y, Zhang C, Hu J et al (2019) NiFe layered double hydroxide/BiVO4 photoanode based dual-photoelectrode photocatalytic fuel cell for enhancing degradation of azo dye and electricity generation. Energy Procedia 158:2188–2195

    CAS  Google Scholar 

  69. Venkatalaxmi A, Padmavathi BS, Amaranath T (2004) A general solution of unsteady Stokes equations. Fluid Dyn Res 35(3):229–236

    Google Scholar 

  70. Li X, Liu J, Huang J et al (2020) All organic s-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys Chim Sinica 37:2010030

    Google Scholar 

  71. Ouyang K, Xie S, Wang P et al (2019) A novel visible-light responsive photocatalytic fuel cell with a highly efficient BiVO4/WO3 inverse opal photoanode and a MnO2/graphene oxide nanocomposite modified cathode. Int J Hydrogen Energy 44(14):7288–7299

    CAS  Google Scholar 

  72. Jia J, Jiang C, Zhang X et al (2019) Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight. Appl Surf Sci 495:143524

    CAS  Google Scholar 

  73. Liu J, Zhou S, Gu P et al (2020) Conjugate polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J Colloid Interface Sci 578:420–411

    Google Scholar 

  74. Liang Z, Shen R, Ng YH et al (2020) A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol 56:89–121

    Google Scholar 

  75. Mittal H, Khanuja M (2020) Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Separat Purif Technol 254:117508

    Google Scholar 

  76. Li Y, Zhang M, Zhou L et al (2020) Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 Reduction. Acta Phys Chim Sin. https://doi.org/10.3866/PKU.WHXB202009030

    Article  Google Scholar 

  77. Li S, Zeng HY, Xiong J et al (2021) Polypyrrole decorated ZnTi hydrotalcite with enhanced adsorption and Cr(VI) photoreduction activity under visible-light. Adv Powder Technol 32:3090–3100

    CAS  Google Scholar 

  78. Parveen SN (2020) Spatial separation of photo-generated carriers and enhanced photocatalytic performance on ZrO2 catalysts via coupling with PPy. Inorg Chem Commun 120:108153

    Google Scholar 

  79. Wageh S, Al-Ghamdi AA, Jafer R et al (2021) A new heterojunction in photocatalysis: S-scheme heterojunction. Chin J Catal 42(5):667–669

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Project No.51876018) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlan Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Xu, Y., Zhong, D. et al. PPy/WO3 Co-modified TiO2 Photoanode Based Photocatalytic Fuel Cell for Degradation of Rhodamine B and Electricity Generation Under Visible Light Illumination. Catal Lett 152, 3594–3606 (2022). https://doi.org/10.1007/s10562-022-03938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03938-z

Keywords

Navigation