Skip to main content
Log in

Pt/Ce–La Nanocomposite for Hydrogenation Promoted by a Synergistic Effect of Support with Redox and Basic Property

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic behavior of hydrogenations is often intimately associated with the supports of Pt-based catalysts. And the issue of support effects is not well resolved yet. We systematically study the support effect using three representative supports, reducible CeO2, basic La2O2CO3 and Ce–La composite with redox and basic properties. The Pt/Ce–La catalyst are well characterized by a serial of methods, such as X-ray powder diffraction, transmission electron microscopy, N2-sorption, X-ray photoelectron spectroscopy, temperature-programmed reduction of H2 (H2-TPR), temperature programmed desorption of CO2 (CO2-TPD) and Raman. Ce–La composite exhibits best catalytic activity in the selective hydrogenation of cinnamaldehyde (CAL). The excellent catalytic performance of Pt/Ce–La composite is mainly ascribed to the optimal electronic Pt-support interactions on the redox sites and appropriate CAL adsorption ability at the basic sites. In all, the recombination of basic sites and redox ability are the critical requirements for the design of efficient catalysts.

Graphical Abstract

We prepared a CeO2–La2O2CO3 nanocomposite with redox and basic property for anchoring Pt nanoparticles. The Pt/Ce–La catalyst exhibited enhanced catalytic activity in the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (CMO) with a good TOF of 2701 h−1, which was much higher than the counterparts of Pt/CeO2 and Pt/La2O2CO3. The synergistic effect between basic La2O2CO3 and redox CeO2 leads to the obviously improved catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Boudart M (1994) Fine-tuning metal clusters. Nature 372:320

    CAS  Google Scholar 

  2. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev 40:81–126

    CAS  Google Scholar 

  3. Wang XF, Liang XH, Geng P, Li QB (2020) Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catal 10:2395–2412

    CAS  Google Scholar 

  4. Xue KZ, Lan XC, Wang JF, Wang TF (2020) Synthesis of Pt@MAF-6 as a steric effect catalyst for selective hydrogenation of cinnamaldehyde. Catal Lett 150:3234–3242

    CAS  Google Scholar 

  5. Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts-a review. Appl Catal A 213:1–24

    CAS  Google Scholar 

  6. Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A (2020) Selective hydrogenation of cinnamaldehyde over the stepped and plane surface of Pd nanoparticles with controlled morphologies by CO chemisorption. ACS Appl Mater Interfaces 12:26002–26012

    PubMed  CAS  Google Scholar 

  7. Giroir-Fendler A, Richard D, Gallezot P (1990) Chemioselectivity in the catalytic hydrogenation of cinnamaldehyde. Effect of metal particle morphology. Catal Lett 5:175–181

    CAS  Google Scholar 

  8. Wei X, Zhou Y, Sun X, Jiang F, Zhang J, Wu Z, Wang F, Li G (2021) Hydrogenation of pentenal over supported Pt nanoparticles: influence of lewis-acid sites in the conversion pathway. New J Chem 45:18881–18887

    CAS  Google Scholar 

  9. Ramos-Fernández EV, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Selective hydrogenation of cinnamaldehyde over (111) preferentially oriented Pt particles supported on expanded graphite. Catal Lett 133:267–272

    Google Scholar 

  10. Zhang WL, Shi WX, Ji WL, Wu HB, Gu ZD, Wang P, Li XH, Qin PS, Zhang J, Fan Y, Wu TY, Fu Y, Zhang WN, Huo FW (2020) Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal 10:5805–5813

    CAS  Google Scholar 

  11. Shaikh MN, Aziz MA, Yamani ZH (2020) Facile hydrogenation of cinnamaldehyde to cinnamyl ether by employing a highly re-usable “dip-catalyst” containing Pt nanoparticles on a green support. Catal Sci Technol 10:6544–6551

    CAS  Google Scholar 

  12. Zhong X, Yi W, Qu Y, Zhang LZ, Bai HY, Zhu YM, Wan J, Chen S, Yang M, Huang L, Gu M, Pan H, Xu BM (2020) Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl Catal B 260:118188

    CAS  Google Scholar 

  13. Liu X, Wang M, Zhou C, Zhou W, Cheng K, Kang JC, Zhang QH, Deng WP, Wang Y (2018) Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chem Commun 54:140–143

    CAS  Google Scholar 

  14. Wang C, Yu F, Zhu M, Wang XG, Dan JM, Zhang JL, Cao P, Dai B (2018) Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50–150 ℃. Chem Eng J 346:182–192

    CAS  Google Scholar 

  15. Chang S, Harle G, Ma J, Yi JH (2020) The effect of textural properties of CeO2-SiO2 mixed oxides on NH3-SCO activity of Pt/CeO2-SiO2 catalyst. Appl Catal A 604:117775

    CAS  Google Scholar 

  16. Wang C, Wen C, Lauterbach J, Sasmaz E (2017) Superior oxygen transfer ability of Pd/MnOx-CeO2 for enhanced low temperature CO oxidation activity. Appl Catal B 206:1–8

    Google Scholar 

  17. Li H, Shen M, Wang J, Wang H, Wang J (2020) Effect of support on CO oxidation performance over the Pd/CeO2 and Pd/CeO2–ZrO2 catalyst. Ind Eng Chem Res 59:1477–1486

    CAS  Google Scholar 

  18. Wang F, Shi RJ, Liu Z, Shang P, Pang X, Shen S, Feng Z, Li C, Shen WJ (2013) Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3. ACS Catal 3:890–894

    CAS  Google Scholar 

  19. Wang F, Zhang Z, Wei X, Fang Q, Jiang X (2017) The shape effect of La2O2CO3 in Pd/La2O2CO3 catalyst for selective hydrogenation of cinnamaldehyde. Appl Catal A 543:196–200

    CAS  Google Scholar 

  20. Wang F, Bi Y, Hu K, Wei X (2020) Pd nanoparticles supported on triangle-shaped La2O2CO3 nanosheets: a new highly efficient and durable catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Chem Eur J 26:4874–4879

    PubMed  CAS  Google Scholar 

  21. Wei X, Rang X, Zhu W, Xiang M, Deng YY, Jiang FH, Mao R, Zhang ZW, Kong XQ, Wang F (2021) Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chem Phys 542:111079

    CAS  Google Scholar 

  22. Mortola VB, Damyanova S, Zanchet D, Bueno JMC (2011) Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane. Appl Catal B 107:221–236

    CAS  Google Scholar 

  23. Beniya A, Higashi S, Ohba N, Jinnouchi R, Hirata H, Watanabe Y (2020) CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nat Commun 11:1–10

    Google Scholar 

  24. Wang F, Ta N, Li Y, Shen WJ (2014) La(OH)3 and La2O2CO3 nanorod catalysts for Claisen-Schmidt condensation. Chin J Catal 35:437–443

    Google Scholar 

  25. Wu Z, Li M, Howe J, Meyer HM III, Overbury SH (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26:16595–16606

    PubMed  CAS  Google Scholar 

  26. Silva IC, Sigoli FA, Mazali IO (2017) Reversible oxygen vacancy generation on pure CeO2 nanorods evaluated by in situ Raman spectroscopy. J Phys Chem C 121:12928–12935

    CAS  Google Scholar 

  27. Shi Q, Qin Z, Waheed A, Gao Y, Xu H, Abroshan H, Li G (2020) Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO 2-spindle nanocomposite: oxygen vacancy engineering. Nano Res 13:939–946

    CAS  Google Scholar 

  28. Yusuf M, Khan MA, Abdullah EC, Elfghi M, Hosomi M, Terada A, Riya S, Ahmad A (2016) Dodecyl sulfate chain anchored mesoporous graphene: synthesis and application to sequester heavy metal ions from aqueous phase. Chem Eng J 304:431–439

    CAS  Google Scholar 

  29. Fan L, Zhang J, Ma K, Zhang YS, Hu YM, Kong LC, Jia AP, Zhang ZH, Huang WX, Lu JQ (2021) Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. J Catal 397:116–127

    CAS  Google Scholar 

  30. Chen Y, Li Y, Chen W, Xu WW, Han Z-k, Waheed A, Ye Z, Li G, Baiker A (2021) Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1-xOδ monoliths: effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Res. https://doi.org/10.1007/s12274-021-3669-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borges LR, da Silva AGM, Braga AH, Rossi LM, Garcia MAS, Vidinha P (2021) Towards the effect of Pt0/Ptδ+ and Ce3+ species at the surface of CeO2 crystals: understanding the nature of the interactions under CO oxidation conditions. ChemCatChem 13:1340–1354

    CAS  Google Scholar 

  32. Chen G, Han B, Deng S, Wang Y, Wang YD (2014) Lanthanum dioxide carbonate La2O2CO3 nanorods as a sensing material for chemoresistive CO2 gas sensor. Electrochim Acta 127:355–361

    CAS  Google Scholar 

  33. Zhang F, Gutiérrez RA, Lustemberg PG, Liu ZY, Rui N, Wu TP, Ramírez PJ, Xu WQ, Idriss H, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2021) Metal-support interactions and C1 chemistry: transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane. ACS Catal 11:1613–1623

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Dai YH, Xu M, Wang QJ, Huang R, Jin YY, Bian B, Tumurbaatar C, Ishtsog B, Bold T, Yang YH (2020) Enhanced activity and stability of Ni/La2O2CO3 catalyst for CO2 methanation by metal-carbonate interaction. Appl Catal B 277:119271

    CAS  Google Scholar 

  35. Bera P, Priolkar KR, Gayen A, Sarode PR, Hegde MS, Emura S, Kumashiro R, Jayaram V, Subbanna GN (2003) Ionic dispersion of Pt over CeO2 by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS. Chem Mater 15:2049–2060

    CAS  Google Scholar 

  36. Liu B, Li CM, Zhang GQ, Yao XS, Chuang SSC, Li Z (2018) Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal 8:10446–10456

    CAS  Google Scholar 

  37. Mu Q, Wang Y (2011) Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods. J Alloys Compd 509:396–401

    CAS  Google Scholar 

  38. Tamura M, Yonezawa D, Oshino T, Nakagawa Y, Tomishige K (2017) In situ formed Fe cation modified Ir/MgO catalyst for selective hydrogenation of unsaturated carbonyl compounds. ACS Catal 7:5103–5111

    CAS  Google Scholar 

  39. Wei Y, Jiao J, Zhang X, Jin BF, Zhao Z, Xiong J, Li YZ, Liu J, Li JM (2017) Catalysts of self-assembled Pt@CeO2−δ-rich core–shell nanoparticles on 3D ordered macroporous Ce1−xZrxO2 for soot oxidation: nanostructure-dependent catalytic activity. Nanoscale 9:4558–4571

    PubMed  CAS  Google Scholar 

  40. Nie L, Mei DH, Xiong HF, Peng B, Ren ZB, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358:1419–1423

    PubMed  CAS  Google Scholar 

  41. Shi Y, Tian S, Shi Q, Waheed A, Cao Y, Li G (2019) Cascade aldol condensation of an aldehyde via the aerobic oxidation of ethanol over an Au/NiO composite. Nanoscale Adv 1:3654–3659

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang Y, Yang X, Zhou Y, Li G, Li Z, Liu C, Bao M, Shen W (2016) Selective hydrogenation of the C=C bond in α, β-unsaturated aldehydes and ketones over ultra-small Pd–Au clusters. Nanoscale 8:18626–18629

    PubMed  CAS  Google Scholar 

  43. Gao P, Wang A, Wang X, Zhang T (2008) Synthesis and catalytic performance of highly ordered Ru-containing mesoporous carbons for hydrogenation of cinnamaldehyde. Catal Lett 125(3–4):289–295. https://doi.org/10.1007/s10562-008-9543-0

    Article  CAS  Google Scholar 

  44. Vu H, Gonçalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P (2006) Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. J Catal 240(1):18–22. https://doi.org/10.1016/j.jcat.2006.03.003

    Article  CAS  Google Scholar 

  45. Wang W, Xie Y, Zhang S, Liu X, Haruta M, Huang J (2018) Selective Hydrogenation of Cinnamaldehyde Catalyzed by ZnO-Fe2O3 Mixed Oxide Supported Gold Nanocatalysts. Catalysts 8(2):60. https://doi.org/10.3390/catal8020060

    Article  CAS  Google Scholar 

  46. Wu Q, Zhang C, Zhang B, Li X, Ying Z, Liu T, Lin W, Yu Y, Cheng H, Zhao F (2016) Highly selective Pt/ordered mesoporous TiO2-SiO2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti2+. J Colloid Interf Sci 463:75–82. https://doi.org/10.1016/j.jcis.2015.10.026

    Article  PubMed  CAS  Google Scholar 

  47. Bhogeswararao S, Srinivas D (2012) Intramolecular selective hydrogenation of cinnamaldehyde over CeO2–ZrO2-supported Pt catalysts. J Catal 285(1):31–40. https://doi.org/10.1016/j.jcat.2011.09.006

    Article  CAS  Google Scholar 

  48. Xue Y, Xin H, Xie W, Wu P, Li X (2019) Pt Nanoparticles supported on YCoxFe1-xO3 perovskite oxides: highly efficient catalysts for liquid-phase hydrogenation of cinnamaldehyde. Chem Commun 55(23):3363–3366. https://doi.org/10.1039/C9CC00318E

    Article  CAS  Google Scholar 

  49. Wu Q, Zhang C, Arai M, Zhang B, Shi R, Wu P, Wang Z, Liu Q, Liu K, Lin W, Cheng H, Zhao F (2019) Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catal 9(7):6425–6434. https://doi.org/10.1021/acscatal.9b00917

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21802008, 21878027), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJD530001, 18KJA150001 and 19KJA430003), the Changzhou Science and Technology Support Program (CE20205029), the fund of the State Key Laboratory of Catalysis in DICP (N-20-12) and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2020-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Xue or Gao Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yu, Z., Wei, X. et al. Pt/Ce–La Nanocomposite for Hydrogenation Promoted by a Synergistic Effect of Support with Redox and Basic Property. Catal Lett 152, 3669–3678 (2022). https://doi.org/10.1007/s10562-022-03934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03934-3

Keywords

Navigation