Skip to main content
Log in

A Novel Nanoencapsulated Zirconium(IV) Chloride Using Non-cross-linked Polystyrene as a Recyclable Lewis Acid Catalyst: Synthesis, Characterization, and Performance Towards Acylation of Alcohols and Phenols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zirconium(IV) chloride/polymer composite nanocapsules with multiple ZrCl4 cores embedded in a non-cross-linked polystyrene shell were first synthesized by coacervation technique and then this heterogenized Lewis acid, PS-NCZrCl4, as a novel and recoverable catalyst showed high efficiency for the selective catalytic acetylation of various alcohols and phenols using acetic anhydride as an acylating reagent at room temperature. The nanocapsules with the average particle size of 600 nm were stable and the encapsulated catalyst showed no appreciable loss of metal ions from nanocapsules suggesting stabilization of the complex was provided by nanocapsules. The linear polystyrene-nanoencapsulated ZrCl4 exhibited excellent catalytic activity and reusability in the acetylation of alcohols and phenols and permeability of the shells of nanocapsules enabled catalytic reactions.

Graphical Abstract

A novel nanoencapsulated zirconium(IV) chloride was prepared by the coacervation technique using non cross-linked polystyrene and used as an environmentally friendly and recyclable heterogeneous catalyst for efficient and selective acetylation of various alcohols and phenols using acetic anhydride at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Hartley FR, Vezey PN (1977) Adv Organomet Chem 15:189–234

    Article  CAS  Google Scholar 

  2. Leadbeater Nicholas E, Marco M (2002) Chem Rev 102(10):3217–3274

    Article  PubMed  CAS  Google Scholar 

  3. Munnik P, de Jongh PE, de Jong KP (2015) Chem Rev 115:6687–6718

    Article  PubMed  CAS  Google Scholar 

  4. Smitha G, Chandrasekhar S, Reddy CS (2008) Synthesis 6:829–855

    Google Scholar 

  5. Nikoofar K, Khademi Z (2016) Res Chem Intermed 42:3929–3977

    Article  CAS  Google Scholar 

  6. Chakraborti AK, Gulhane R (2004) Synlett 4:627–630

    Article  Google Scholar 

  7. Farnworth E, Jones SL, McAlpine I (1980) The production, properties and uses of zirconium chemicals. In: Thompson R (ed) Speciality inorganic chemicals. Special publication No. 40. Royal Society of Chemistry, London, pp 248–279

    Google Scholar 

  8. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  9. Emsley J (1988) The elements, 3rd edn. Clarendon, Oxford

    Google Scholar 

  10. Patney Harish K, Margan S (1996) Tetrahedron Lett 37:4621–4622

    Article  Google Scholar 

  11. Tamami B, Parvanak Borujeni K (2009) Iran Polym J 18(3):191–206

    CAS  Google Scholar 

  12. Tamami B, Goudarzian N (1994). J Chem Soc Chem Commun. https://doi.org/10.1039/c39940001079

    Article  Google Scholar 

  13. Karimi B, Maleki J (2003) J Org Chem 68:4951–4954

    Article  PubMed  CAS  Google Scholar 

  14. Niknam K, Saberi D (2009) Appl Catal A 366:220–225

    Article  CAS  Google Scholar 

  15. Liu Z, Ma Q, Liu Y, Wang Q (2014) Org Lett 16:236–239

    Article  PubMed  CAS  Google Scholar 

  16. Saravanan P, Singh Vinod K (1999) Tetrahedron Lett 40:2611–2614

    Article  CAS  Google Scholar 

  17. Kantam ML, Aziz K, Likhar PR (2006) Catal Commun 7:484–487

    Article  CAS  Google Scholar 

  18. Tale RH, Adude RN (2006) Tetrahedron Lett 47:7263–7265

    Article  CAS  Google Scholar 

  19. Mohammadpoor-Baltork I, Aliyan H, Khosropour AR (2001) Tetrahedron 57:5851–5854

    Article  CAS  Google Scholar 

  20. Iqbal J, Srivastava RR (1992) J Org Chem 57:2001–2007

    Article  CAS  Google Scholar 

  21. Eshghi H, Shafieyoonb P (2004) J Chem Res 204:802–805

    Article  Google Scholar 

  22. RaJabi F (2009) Tetrahedron Lett 50:395–397

    Article  CAS  Google Scholar 

  23. Ghaffari Khaligh N (2013) RSC Adv 3:99–110

    Article  CAS  Google Scholar 

  24. Yeo Y, Park K (2005) Encycl Pharm Technol 116:1–15

    Google Scholar 

  25. Kobayashi S, Nagayama S (1998) J Am Chem Soc 120:2985–2986

    Article  CAS  Google Scholar 

  26. Choudary BM, Sridhar Ch, Sateesh M, Sreedhar B (2004) J Mol Catal A: Chem 212:237–243

    Article  CAS  Google Scholar 

  27. Kontkanen M-L, Vlasova L, Suvanto S, Haukka M (2011) Appl Catal A 401:141–146

    Article  CAS  Google Scholar 

  28. Akiyama R, Kobayashi S (2001) Angew Chem Int Ed 40(2):3469–3471

    Article  CAS  Google Scholar 

  29. Ley Steven V, Ramarao C, Lee A-L, Østergaard N, Smith Stephen C, Shirley Ian M (2003) Org Lett 5(2):185–187

    Article  PubMed  CAS  Google Scholar 

  30. Akiyama R, Kobayashi S (2009) Chem Rev 109:594–642

    Article  PubMed  CAS  Google Scholar 

  31. Rahmatpour A, Goodarzi N (2019) Catal Commun 124:24–31

    Article  CAS  Google Scholar 

  32. Rahmatpour A, Emen R, Amini G (2019) J Organomet Chem 892:24–33

    Article  CAS  Google Scholar 

  33. Rahmatpour A (2012) Polyhedron 44:66–71

    Article  CAS  Google Scholar 

  34. Höfle G, Steglich V, Vorbruggen H (1978) Angew Chem Int Ed Engl 17:569–583

    Article  Google Scholar 

  35. Meshram GA, Patil VD (2009) Synth Commun 39:2516–2528

    Article  CAS  Google Scholar 

  36. Osiglio L, Romanelli G, Blanco M (2010) J Mol Catal A Chem 316:52–58

    Article  CAS  Google Scholar 

  37. Salavati-Niasari M, Hydarzadeh S, Amiri A, Salavati S (2005) J Mol Catal A Chem 231:191–195

    Article  CAS  Google Scholar 

  38. Zolfigol MA, Khazaei A, Ghorbani Choghamarani A, Rostami A, Hajjami M (2006) Catal Commun 7:399–402

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Petro Paak petrochemical company, for providing the polystyrene samples, and partial support provided by the Shahid Beheshti University Research Council (Grant No. 1156/1/130/J-1398) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AR: Conceptualization, investigation, writing-original draft, product characterization, writing-review, and editing; SA: executing reactions, characterization, methodology, and data curation.

Corresponding author

Correspondence to Ali Rahmatpour.

Ethics declarations

Conflict of interest

All authors declare that No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1246 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatpour, A., Alinejad, S. A Novel Nanoencapsulated Zirconium(IV) Chloride Using Non-cross-linked Polystyrene as a Recyclable Lewis Acid Catalyst: Synthesis, Characterization, and Performance Towards Acylation of Alcohols and Phenols. Catal Lett 152, 3655–3668 (2022). https://doi.org/10.1007/s10562-022-03933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03933-4

Keywords

Navigation