Skip to main content
Log in

Low-Temperature Catalytic Combustion of Chlorobenzene Over CeOx-VOx/TiO2-Graphene Oxide Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CeOx-VOx/TiO2 catalysts (Ce-V/Ti) incorporating graphene oxide (GO) were synthesized via a sol–gel method and used for catalytic combustion of chlorobenzene (CB). Compared with Ce-V/Ti, GO supported catalysts (Ce-V/Ti-GO) presented more excellent performance. Characterization by XRD, TEM, BET, XPS, FTIR and H2-TPR revealed that the specific surface area of catalyst and the concentrations of surface Ce3+ and V4+ were enlarged after GO modification. However, introducing too much GO did not be conductive to promote catalyst activity. With the GO ratio increasing to 1.5%, Ce from catalyst was prone to form a separate crystal CeO2 with large size, resulting in a decline in specific surface area and uneven dispersion of active components. Ce-V/Ti-GO with 0.7% GO support showed high activity with the temperature for a 90% CB conversion (T90) of 236 °C. The main phase from Ce-V/Ti-GO(0.7) was anatase and evident lattice distortion resulted from Ce–O–Ti solid solution was observed. In the case of Ce-V/Ti-GO catalysts, V effectively promoted the activity of catalysts and the stability with the variation of GO ratio. The synergy between Ce and GO played the critical role on the low-temperature performance of catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao K, Han W, Tang Z et al (2017) High-efficiency environmental friendly Fe-W-Ti catalyst for selective catalytic reduction of NO with NH3: the structure-activity relationship. Catal Surv Asia 22:20–30

    Article  Google Scholar 

  2. Zhu J, Zhang W, Qi Q et al (2019) Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO2-cordierite molded catalyst. Sci Rep 9:1–10

    Google Scholar 

  3. Liu Y, Wang L, Jin W et al (2017) Synthesis and photocatalytic property of TiO2@V2O5 core-shell hollow porous microspheres towards gaseous benzene. J Alloys Compd 690(690):604–611

    Article  CAS  Google Scholar 

  4. Auvray X, Olsson L (2015) Stability and activity of Pd-, Pt- and Pd–Pt catalysts supported on alumina for NO oxidation. Appl Catal B 168:342–352

    Article  Google Scholar 

  5. Yu M, Li W, Li X et al (2016) Development of new transition metal oxide catalysts for the destruction of PCDD/Fs. Chemosphere 156:383–391

    Article  PubMed  CAS  Google Scholar 

  6. Ji L, Cao X, Lu S et al (2018) Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst: effect of chlorinated benzenes and chlorinated phenols. J Hazard Mater 322:220–230

    Article  Google Scholar 

  7. Lang X, Ge F, Cai K et al (2019) A novel Mn3O4/MnO nano spherical transition metal compound prepared by vacuum direct current arc method as bi-functional catalyst for lithium-oxygen battery with excellent electrochemical performances. J Alloys Compd 770:451–457

    Article  CAS  Google Scholar 

  8. Wang T, Liu H, Zhang X et al (2018) Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: investigation of acidity, activity and stability of catalyst in the synergic system. Appl Surf Sci 457:187–199

    Article  CAS  Google Scholar 

  9. Wei D, Dai Q, Lao Y et al (2016) Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts. Appl Catal B 181:S1231100558

    Google Scholar 

  10. Chen L, Liao Y, Chen Y et al (2020) Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCs. Fuel Process Technol 207:106483

    Article  CAS  Google Scholar 

  11. Ma X, Quan S, Xi F et al (2013) Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts. Appl Catal A 450:143–151

    Article  CAS  Google Scholar 

  12. Santamaria L, Vicente MA, Korili SA et al (2020) Saline slag waste as an aluminum source for the synthesis of Zn-Al-Fe-Ti layered double-hydroxides as catalysts for the photodegradation of emerging contaminants. J Alloys Compd 843:156007

    Article  CAS  Google Scholar 

  13. Chiraz G, Romain D, Pierre E et al (2011) Sol–gel derived V2O5–TiO2 mesoporous materials as catalysts for the total oxidation of chlorobenzene. Catal Commun 1:1–5

    Google Scholar 

  14. Hao H, Gu Y, Jian Z et al (2015) Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J Catal 326:54–68

    Article  Google Scholar 

  15. Wang XY, Qian K, Li D (2009) Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Appl Catal B 86:166–175

    Article  CAS  Google Scholar 

  16. Wu M, Wang XY, Dai QG et al (2010) Low temperature catalytic combustion of chlorobenzene over Mn-Ce-O/γ-Al2O3 mixed oxides catalyst. Catal Today 158:336–342

    Article  CAS  Google Scholar 

  17. Yu D, Wang X, Dai Q et al (2012) Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl Catal B 111:141–149

    Google Scholar 

  18. Zhan W, Yun G, Gong X et al (2014) Current status and perspectives of rare earth catalytic materials and catalysis, Chinese. J Catal 35:1238–1250

    CAS  Google Scholar 

  19. Jones J, Ross JRH (1997) The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catal Today 35:97–105

    Article  CAS  Google Scholar 

  20. Weber R, Akurai ST, Hagenmaier H (1999) Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl Catal B 20:249–256

    Article  CAS  Google Scholar 

  21. Krishnamoorthy S, Rivas JA, Amiridis MD (2000) Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J Catal 193:264–272

    Article  CAS  Google Scholar 

  22. Lichtenberger J, Amiridis MD (2004) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J Catal 223:296–308

    Article  CAS  Google Scholar 

  23. Bertinchamps F, Treinen M, Blangenois N et al (2005) Positive effect of NOx on the performances of VOx/TiO2 -based catalysts in the total oxidation abatement of chlorobenzene. J Catal 230:493–498

    Article  CAS  Google Scholar 

  24. Albonetti S, Blasioli S, Bruno A et al (2006) Effect of silica on the catalytic destruction of chlorinated organics over V2O5/TiO2 catalysts. Appl Catal B 64:1–8

    Article  CAS  Google Scholar 

  25. Guan Y, Li C (2007) Effect of CeO redox behavior on the catalytic activity of a VO/CeO catalyst for chlorobenzene oxidation, Chinese. J Catal 28:392–394

    CAS  Google Scholar 

  26. Finocchio E, Ramis G, Busca G et al (1996) On the mechanisms of light alkane catalytic oxidation and oxy-dehydrogenation: an FT-IR study of the n -butane conversion over MgCr2O4 and a Mg-vanadate catalyst. Catal Today 28:381–389

    Article  CAS  Google Scholar 

  27. Ganduglia-Pirovano MV, Popa C, Sauer J et al (2010) Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. J Am Chem Soc 132:2345–2349

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Yang H, Qiu F et al (2011) Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. J Hazard Mater 192:915–921

    Article  PubMed  CAS  Google Scholar 

  29. Wang Q, Hung PC, Lu S et al (2016) Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: effect of NO and NH3 addition. Chemosphere 159:132–137

    Article  PubMed  CAS  Google Scholar 

  30. Nie A, Yang H, Qian LI et al (2011) Catalytic oxidation of chlorobenzene over V2O5/TiO2-carbon nanotubes composites. Catal Lett 141:158–162

    Article  Google Scholar 

  31. Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  PubMed  CAS  Google Scholar 

  32. Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  33. Dutta G, Waghmare UV, Baidya T et al (2006) Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2 compared to CeO2 or TiO2. Chem Mater 18:3249–3256

    Article  CAS  Google Scholar 

  34. Watanabe S, Ma X, Song C (2009) Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J Phys Chem C 113:14249–14257

    Article  CAS  Google Scholar 

  35. Kim HS, Kang SH (2013) Effect of hydrogen treatment on anatase TiO2 nanotube arrays for photoelectrochemical water splitting. B Kor Chem Soc 34:2067–2072

    Article  CAS  Google Scholar 

  36. Lv P, Sun H, Mu Y et al (2014) Ti5O9 in TiO2 nanotube array activates the visible-light absorption properties significantly. Electrochim Acta 146:186–193

    Article  CAS  Google Scholar 

  37. Schierbaum KD (1998) Ordered ultra-thin cerium oxide overlayers on Pt (111) single crystal surfaces studied by LEED and XPS. Surf Sci 399:29–38

    Article  CAS  Google Scholar 

  38. He H, Dai HX, Au CT (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions. Catal Today 89:245–254

    Article  Google Scholar 

  39. Creaser DA, Harrison PG, Morris MA et al (1994) X-ray photoelectron spectroscopic study of the oxidation and reduction of a cerium (III) oxide/cerium foil substrate. Catal Lett 23:13–24

    Article  CAS  Google Scholar 

  40. Venkataswamy P, Rao KN, Jampaiah D et al (2015) Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Catal Lett 162:122–132

    CAS  Google Scholar 

  41. Fei H, Luo J, Liu S (2016) Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene. Chem Eng J 294:362–370

    Article  Google Scholar 

  42. Odedairo T, Ma J, Gu Y et al (2013) One-pot synthesis of carbon nanotube-graphene hybrids via syngas production. J Mater Chem A 2:1418–1428

    Article  Google Scholar 

  43. Harish S, Sabarinathan M, Archana J et al (2017) Functional properties and enhanced visible light photocatalytic performance of V3O4 nanostructures decorated ZnO nanorods. Appl Surf Sci 418:171–178

    Article  CAS  Google Scholar 

  44. Dong G, Bai Y, Zhang Y et al (2015) Effect of the V4+(3+) V5+ ratio on the denitration activity for V2O5-WO3/TiO2 catalysts. New J Chem 5:3588–3596

    Article  Google Scholar 

  45. Lee JY, Hong SH, Cho SP et al (2006) The study of deNOx catalyst in low temperature using nano-sized supports. Curr Appl Phys 6:996–1001

    Article  Google Scholar 

  46. Lars S, Andersson T (1990) An XPS study of dispersion and valence state of TiO2 supported vanadium oxide catalysts. Catal Lett 7:351–358

    Article  Google Scholar 

  47. Biniak S, Szymański G, Siedlewski J et al (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    Article  CAS  Google Scholar 

  48. Dandekar A, Baker RTK, Vannice MA (1998) Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon 36:1821–1831

    Article  CAS  Google Scholar 

  49. Cockroft SL, Hunter CA, Lawson KR et al (2005) Electrostatic control of aromatic stacking interactions. J Am Chem Soc 127:8594–8595

    Article  PubMed  CAS  Google Scholar 

  50. Georgakilas V, Tiwari JN, Kemp KC et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic and biomedical applications. Chem Rev 116:5464

    Article  PubMed  CAS  Google Scholar 

  51. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Article  PubMed  CAS  Google Scholar 

  52. Poelman H, Sels BF, Olea M et al (2007) New supported vanadia catalysts for oxidation reactions prepared by sputter deposition. J Catal 245:156–172

    Article  CAS  Google Scholar 

  53. Popova GY, Andrushkevich TV, Semionova EV et al (2008) Heterogeneous selective oxidation of formaldehyde to formic acid on V/Ti oxide catalysts: the role of vanadia species. J Mol Catal A Chem 283:146–152

    Article  CAS  Google Scholar 

  54. Arena F, Trunfio G, Negro J et al (2008) Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO). Appl Catal B 85:40–47

    Article  CAS  Google Scholar 

  55. Arena F, Trunfio G, Negro J et al (2007) Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route. ChemInform 38:2269–2276

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate sincerely for the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 21KJB450002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ming Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Ding, L., Long, Hm. et al. Low-Temperature Catalytic Combustion of Chlorobenzene Over CeOx-VOx/TiO2-Graphene Oxide Catalysts. Catal Lett 152, 3617–3631 (2022). https://doi.org/10.1007/s10562-022-03932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03932-5

Keywords

Navigation