Skip to main content
Log in

Study on the Bimetallic Synergistic Effect of Cu/Al@SBA-15 Nanocomposite on Dehydrogenation Coupling Strategy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dehydrogenation coupling reaction is an efficient strategy of metal-catalyzed organic synthesis, but it is still a research hotspot to regulate the positive effect of various metals on the reaction and make them cooperate with each other. In this work, nanocomposite modified with aluminum and loaded with copper were used as bimetallic catalysts for dehydrogenation coupling reaction. The results showed that the modification of aluminum maked CuO particles disperse highly and exist stably on SBA-15. The bimetallic synergistic catalytic effect of Cu/Al@SBA-15 composite was far greater than that of any one active components alone, and the synergistic effect between Cu and Al was the main reason for its excellent catalytic performance. It guided the dehydrogenation coupling reaction of o-aminophenol and benzyl alcohol, and a series of benzothiazoles products were obtained efficiently by one-pot method. Moreover, the Cu/Al@SBA-15 catalyst still has stable catalytic activity after repeated use, and the leaching of aluminum and copper species in solution was negligible after the reaction. The copper–aluminum bimetal used in strategy does not belong to the highly toxic metal sequence, so this method provides a green synthesis platform for accessing pharmaceutically relevant benzoazoles.

Graphical abstract

General Scheme. Synthesis of o-aminophenols and benzyl alcohols to benzothiazoles catalyzed by bimetallic synergistic effect of Cu/Al@SBA-15 nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen R, Jalili Z, Tayebee R (2021) RSC Adv 11:16359–16375

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Thekkeppat NP, Lakshmipathi M, Jalilov AS et al (2020) Cryst Growth Des 20:3937–3943

    CAS  Google Scholar 

  3. Irfan A, Batool F, Naqvi SAZ et al (2020) J Enzyme Inhib Med Chem 35:265–279

    PubMed  CAS  Google Scholar 

  4. Abdelgawad MA, Bakr RB, Omar HA (2017) Bioorgan Chem 74:82–90

    CAS  Google Scholar 

  5. Day JJ, Neill DL, Xu S et al (2017) Org Lett 19:3819–3822

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Barman S, Mukhopadhyay SK, Biswas S et al (2016) Angew Chem Int Ed 55:4194–4198

    CAS  Google Scholar 

  7. Rouf A, Tanyeli C (2015) Eur J Med Chem 97:911–927

    PubMed  CAS  Google Scholar 

  8. Soni B, Ranawat MS, Sharma R et al (2010) Eur J Med Chem 45:2938–2942

    PubMed  CAS  Google Scholar 

  9. Bradshaw TD, Westwell AD (2004) Curr Med Chem 11:1009–1021

    PubMed  CAS  Google Scholar 

  10. Singh A, Panda S, Dey S et al (2021) Angew Chem Int Ed 60:11206–11210

    CAS  Google Scholar 

  11. Ferlin F, van der Hulst MK, Santoro S et al (2019) Green Chem 21:5298–5305

    CAS  Google Scholar 

  12. Ghanavatkar CW, Mishra VR, Mali SN et al (2019) J Mol Struct 1192:162–171

    CAS  Google Scholar 

  13. Das K, Mondal A, Srimani D (2018) Chem Commun 54:10582–10585

    CAS  Google Scholar 

  14. Singh MK, Tilak R, Nath G et al (2013) Eur J Med Chem 63:635–644

    PubMed  CAS  Google Scholar 

  15. Karalı N, Güzel Ö, Özsoy N et al (2010) Eur J Med Chem 45:1068–1077

    PubMed  Google Scholar 

  16. Wu Y, Guo P, Chen L et al (2021) Chem Commun 57:3271–3274

    CAS  Google Scholar 

  17. Chakrabarti K, Maji M, Kundu S (2019) Green Chem 21:1999–2004

    CAS  Google Scholar 

  18. Azizi K, Madsen R (2018) ChemCatChem 10:3703–3708

    CAS  Google Scholar 

  19. Narang U, Yadav KK, Bhattacharya S et al (2017) ChemistrySelect 2:7135–7140

    CAS  Google Scholar 

  20. Lai YL, Ye JS, Huang JM (2016) Chem Eur J 22:5425–5429

    PubMed  CAS  Google Scholar 

  21. Tateyama K, Wada K, Miura H et al (2016) Catal Sci Technol 6:1677–1684

    CAS  Google Scholar 

  22. Shi X, Guo J, Liu J et al (2015) Chem Eur J 21:9988–9993

    PubMed  CAS  Google Scholar 

  23. Yu J, Shen M, Lu M (2015) J Iran Chem Soc 12:771–778

    CAS  Google Scholar 

  24. Bala M, Verma PK, Sharma U et al (2013) Green Chem 15:1687–1693

    CAS  Google Scholar 

  25. Kondo T, Yang S, Huh KT et al (1991) Chem Lett 20:1275–1278

    Google Scholar 

  26. Sang X, Hu X, Tao R et al (2020) ChemPlusChem 85:123–129

    CAS  Google Scholar 

  27. Yao W, Duan ZC, Zhang Y et al (2019) Adv Synth Catal 361:5695–5703

    CAS  Google Scholar 

  28. Ge C, Sang X, Yao W et al (2018) Green Chem 20:1805–1812

    CAS  Google Scholar 

  29. Xu Z, Wang DS, Yu X et al (2017) Adv Synth Catal 359:3332–3340

    CAS  Google Scholar 

  30. Sun K, Shan H, Lu GP et al (2021) Angew Chem Int Ed 60:25188–25202

    CAS  Google Scholar 

  31. Budweg S, Junge K, Beller M (2020) Catal Sci Technol 10:3825–3842

    CAS  Google Scholar 

  32. Tan Z, Ci C, Yang J et al (2020) ACS Catal 10:5243–5249

    CAS  Google Scholar 

  33. Zhou C, Tan Z, Jiang H et al (2018) ChemCatChem 10:2887–2892

    CAS  Google Scholar 

  34. Xie F, Chen QH, Xie R et al (2018) ACS Catal 8:5869–5874

    CAS  Google Scholar 

  35. Tan Z, Jiang H, Zhang M (2016) Chem Commun 52:9359–9362

    CAS  Google Scholar 

  36. Verma P, Kuwahara Y, Mori K et al (2020) Nanoscale 12:11333–11363

    PubMed  CAS  Google Scholar 

  37. Bacariza MC, Graça I, Bebiano SS et al (2018) Chem Eng Sci 175:72–83

    CAS  Google Scholar 

  38. Singh S, Kumar R, Setiabudi HD et al (2018) Appl Catal A Gen 559:57–74

    CAS  Google Scholar 

  39. Cirujano FG, Luz I, Soukri M et al (2017) Angew Chem Int Ed 56:13302–13306

    CAS  Google Scholar 

  40. Bhanja P, Modak A, Chatterjee S et al (2017) ACS Sustainable Chem Eng 5:2763–2773

    CAS  Google Scholar 

  41. Prokopowicz M, Żeglinski J, Szewczyk A et al (2015) AAPS PharmSciTech 283:70–79

    Google Scholar 

  42. Zhu J, Wang T, Xu X et al (2013) Appl Catal B Environ 130:197–217

    Google Scholar 

  43. Zeidan RK, Hwang SJ, Davis ME (2006) Angew Chem Int Ed 45:6332–6335

    CAS  Google Scholar 

  44. Bukhari SN, Chong CC, Setiabudi HD et al (2021) Chem Eng Sci 229:116141

    CAS  Google Scholar 

  45. Wu H, Xiao Y, Guo Y et al (2020) Micropor Mesopor Mater 292:109754

    CAS  Google Scholar 

  46. Dacquin JP, Lee AF, Pirez C et al (2012) Chem Commun 48:212–214

    CAS  Google Scholar 

  47. Sayari A, Han BH, Yang Y (2004) J Am Chem Soc 126:14348–14349

    PubMed  CAS  Google Scholar 

  48. Yang CM, Zibrowius B, Schmidt W et al (2003) Chem Mater 15:3739–3741

    CAS  Google Scholar 

  49. Kruk M, Jaroniec M, Ko CH et al (2000) Chem mater 12:1961–1968

    CAS  Google Scholar 

  50. Zhao DY, Feng JL, Huo QS et al (1998) Science 279:548–552

    PubMed  CAS  Google Scholar 

  51. Shan W, Zhang Y, Shu Y et al (2021) Micropor Mesopor Mater 317:110996

    CAS  Google Scholar 

  52. Miao K, Luo X, Wang W et al (2019) Micropor Mesopor Mater 289:109640

    CAS  Google Scholar 

  53. Devi P, Das U, Dalai AK (2018) Chem Eng J 346:477–488

    CAS  Google Scholar 

  54. Cabrera-Munguia DA, González H, Tututi-Ríos E et al (2018) J Mater Res 33:3634–3645

    CAS  Google Scholar 

  55. Lai YT, Chen TC, Lan YK et al (2014) ACS Catal 4:3824–3836

    CAS  Google Scholar 

  56. Koekkoek AJJ, van Veen JAR, Gerrtisen PB et al (2012) Micropor Mesopor Mater 151:34–43

    CAS  Google Scholar 

  57. Lu Q, Tang Z, Zhang Y et al (2010) Ind Eng Chem Res 49:2573–2580

    CAS  Google Scholar 

  58. Du J, Xu H, Shen J et al (2005) Appl Catal A Gen 296:186–193

    CAS  Google Scholar 

  59. Hongmanorom P, Ashok J, Zhang G et al (2021) Appl Catal B Environ 282:119564

    CAS  Google Scholar 

  60. Calles JA, Carrero A, Vizcaíno AJ et al (2020) Int J Hydrogen Energy 45:15941–15950

    CAS  Google Scholar 

  61. Sureshkumar K, Shanthi K, Sasirekha NR et al (2020) Int J Hydrogen Energy 45:4328–4340

    CAS  Google Scholar 

  62. Baharudin KB, Taufiq-Yap YH, Hunns J et al (2019) Micropor Mesopor Mater 276:13–22

    CAS  Google Scholar 

  63. Megía PJ, Carrero A, Calles JA et al (2019) Catalysts 9:1013

    Google Scholar 

  64. Vizcaíno AJ, Carrero A, Calles JA (2016) Fuel Process Technol 146:99–109

    Google Scholar 

  65. Cai C, Zhang H, Zhong X et al (2015) J Hazard Mater 283:70–79

    PubMed  CAS  Google Scholar 

  66. Lindo M, Vizcaíno AJ, Calles JA et al (2010) Int J Hydrogen Energy 35:5895–5901

    CAS  Google Scholar 

  67. Klimova T, Reyes J, Gutiérrez O et al (2008) Appl Catal A Gen 335:159–171

    CAS  Google Scholar 

  68. Liu J, Xie Y, Yang Q, Huang N, Wang L (2021) Chin J Org Chem 41:2374–2383

    Google Scholar 

  69. Liu JN, Liu N, Yang QQ, Wang L (2021) Org Chem Front 8:5296–5302

    CAS  Google Scholar 

  70. Tian AQ, Luo XH, Ren ZL et al (2021) New J Chem 45:9614–9620

    CAS  Google Scholar 

  71. Yang QQ, Liu N, Yan JY et al (2020) Asian J Org Chem 9:116–120

    CAS  Google Scholar 

  72. He XK, Cai BG, Yang QQ et al (2019) Chem Asian J 14:3269–3273

    PubMed  CAS  Google Scholar 

  73. Wang L, Xie YB, Huang NY et al (2017) Adv Synth Catal 359:779–785

    CAS  Google Scholar 

  74. Wang L, Xie YB, Huang NY et al (2016) ACS Catal 6:4010–4016

    CAS  Google Scholar 

  75. Luo X, Tian A, Pei M et al (2022) Chem Eur J 28:e202103361. https://doi.org/10.1002/chem.202103361

    Article  CAS  Google Scholar 

  76. Luo X, Xie Y, Huang N et al (2022) Chin J Org. Chem https://doi.org/10.6023/cjoc202108030

    Article  Google Scholar 

  77. Pei M, Kong H, Tian A et al (2021) J Mol Struct 1250:131806

    Google Scholar 

  78. Hua TB, Liu CX, Hu WM et al (2021) Sci Rep 11:2078

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Luan ZH, Hartmann M, Zhao DY et al (1999) Chem Mater 11:1621–1627

    CAS  Google Scholar 

  80. Chen LF, Guo PJ, Zhu LJ et al (2009) Appl Catal A Gen 356:129–136

    CAS  Google Scholar 

  81. Chmielarz L, Kuśtrowski P, Dziembaj R et al (2010) Micropor Mesopor Mater 127:133–141

    CAS  Google Scholar 

  82. Lakhi KS, Singh G, Kim S et al (2018) Micropor Mesopor Mater 267:134–141

    CAS  Google Scholar 

  83. Bao Q, Zhu WC, Yan JB et al (2017) RSC Adv 7:52304–52311

    CAS  Google Scholar 

  84. Yue YH, Gédéon A, Bonardet JL et al (1999) Chem Commun 1967–1968

  85. Chen K, Ling J, Wu CD (2020) Angew Chem Int Ed 59:1925–1931

    CAS  Google Scholar 

  86. Mokhtari J, Bozcheloei AH (2018) Inorganica Chim Acta 482:726–731

    CAS  Google Scholar 

  87. Mohanty A, Roy S (2016) Tetrahedron Lett 57:2749–2753

    CAS  Google Scholar 

  88. Chaudhari C, Siddiki SMAH, Shimizu K (2015) Tetrahedron Lett 56:4885–4888

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (21602123) and the 111 Project (D20015).

Author information

Authors and Affiliations

Authors

Contributions

X-HL carried out the synthesis of composites and organic reactions, measured and obtained all the characterization data, collated and analyzed them, and finally wrote the first draft. A-QT assisted evaluating characterization data and writing the manuscript. ZR supervision. HK supervision. LW formulated the research plan, provided core guidance, and made the review and revision of the manuscript.

Corresponding authors

Correspondence to Zhilin Ren, Hanhan Kong or Long Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1054 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Tian, A., Ren, Z. et al. Study on the Bimetallic Synergistic Effect of Cu/Al@SBA-15 Nanocomposite on Dehydrogenation Coupling Strategy. Catal Lett 152, 3704–3715 (2022). https://doi.org/10.1007/s10562-022-03929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03929-0

Keywords

Navigation