Skip to main content

Efficient Catalyst Based on Pyridinium Modified MCM-41 for Carbon Dioxide Utilization


Pyridinium halide modified MCM-41 was used as a catalyst for the model reaction of styrene oxide with carbon dioxide. The modification was performed in two steps—first, the modification of MCM-41 by halogenopropyl triethoxy silane followed by the reaction with pyridine. The process was successful for the production of pyridinium bromide and iodide. The modification by chlorine was problematic. The prepared materials were characterized by available methods—XRF, XRD, EA, TPH, DVS, FTIR, UV/Vis, TGA, and nitrogen physisorption—confirming the successful formation of the desired material. For the catalysis, the strong interaction of pyridinium ion was necessary. The prepared materials containing bromine and iodine were used as efficient catalysts for the formation of styrene carbonate from styrene oxide. The achieved selectivity was up to 99% with TONs 5800 (calculated on the amount of loaded pyridine) under 1.2 MPa, 120 °C, without any solvent. Solvents negatively influenced the reaction rate. Dependently on halogen, the rate increased in the row Cl < Br < I modified MCM-41. The catalysts might be reused with only a slight loss of activity in the three following cycles. These materials represent simple, available, and promising catalysts for the reaction of epoxides with carbon dioxide.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Ang R-R, Sin LT, Bee ST, Tee TT, Kadhum AAH, Rahmat AR, Wasmi BA (2015) J Clean Prod 102:1

    CAS  Article  Google Scholar 

  2. Qin Z, Thomas CM, Lee S, Coates GW (2003) Angew Chem Int Ed Engl 42:5484

    CAS  Article  Google Scholar 

  3. Rehman A, Fernández AML, Resul MFMG, Harvey AP (2018) J CO2 Util 20:341

    Article  Google Scholar 

  4. Kawanami H, Ikushima Y (2000) Chem Commun 21:2089

    Article  Google Scholar 

  5. Sakakura T, Kohno K (2009) Chem Commun 11:1312

    Article  Google Scholar 

  6. North M, Pasquale R (2009) Angew Chem Int Ed Engl 121:2990

    Article  Google Scholar 

  7. Wang JQ, Dong K, Cheng WG, Sun J, Zhang SJ (2012) Catal Sci Technol 2:1480

    Article  Google Scholar 

  8. Tian JS, Cai F, Wang J, Du Y, He LN (2008) Phosphorus Sulfur Silicon Relat Elem 183:494

    CAS  Article  Google Scholar 

  9. Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155

    CAS  Article  Google Scholar 

  10. Song J, Zhang Z, Han B, Hu S, Li W, Xie Y (2008) Green Chem 10:1337

    CAS  Article  Google Scholar 

  11. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T (1997) Chem Commun 12:1129

    Article  Google Scholar 

  12. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) J Am Chem Soc 12:4526

    Article  Google Scholar 

  13. Du Y, Wang JQ, Chen JY, Cai F, Tian JS, Kong DL, He LN (2006) Tetrahedron Lett 47:1217

    Article  Google Scholar 

  14. Wang JQ, Kong DL, Chen JY, Cai F, He LN (2006) J Mol Catal A: Chem 249:143

    CAS  Article  Google Scholar 

  15. Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561

    Article  Google Scholar 

  16. Ochiai B, Endo T (2007) J Polym Sci A Polym Chem 45:5673

    CAS  Article  Google Scholar 

  17. Wong WL, Lee LYS, Ho KP, Zhou ZY, Fan T, Lin Z, Wong KY (2014) Appl Catal A 472:160

    CAS  Article  Google Scholar 

  18. Motokura K, Itagaki S, Iwasawa Y, Miyaji A, Baba T (2009) Green Chem 11:1876

    CAS  Article  Google Scholar 

  19. Sobhani S, Bazrafshan M, Delluei AA, Parizi ZP (2013) Appl Catal A 454:145

    CAS  Article  Google Scholar 

  20. Mukhopadhyay C, Ray S (2011) Tetrahedron 67:7936

    CAS  Article  Google Scholar 

  21. Ezzat AO, Atta AM, Al-Lohedan HA, Aldalbahi A (2020) J Mol Liq 312:113407

    CAS  Article  Google Scholar 

  22. Lethesh KC, Evjen S, Raj JJ, Roux DCD (2019) Front Chem 7:625

    CAS  Article  Google Scholar 

  23. Babaee S, Zolfigol MA, Zarei M, Abbasi M, Najafi Z (2019) Mol Catal 475:110403

    CAS  Article  Google Scholar 

  24. Anvar S, Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Khosropour AR, Isfahani AL, Kia R (2014) ACS Comb Sci 16:93

    CAS  Article  Google Scholar 

  25. Gujjarappa R, Vodnala N, Malakar C (2020) ChemistrySelect 5:8758

    Google Scholar 

  26. Barton Cole EE, Baruch MF, L’Esperance RP, Kelly MT, Lakkaraju PS, Zeitler E, Bocarsly AB (2015) Top Catal 58:15

    CAS  Article  Google Scholar 

  27. Palomino GT, Pascual JJC, Delgado MR, Parra JB, Areán CO (2004) Mater Chem Phys 85:145

    Article  Google Scholar 

  28. Velthoen MEZ, Nab S, Weckhuysen BM (2018) Phys Chem Chem Phys 20:21647

    CAS  Article  Google Scholar 

  29. Hašková A, Bashta B, Titlová Š, Brus J, Vagenknechtová A, Vyskočilová E, Sedláček J (2021) Macromol Rapid Commun 42:2100209

    Article  Google Scholar 

  30. Vrbková E, Vyskočilová E, Lhotka M, Červený L (2020) Catalysts 10:1244

    Article  Google Scholar 

  31. Vyskočilová E, Malý M, Aho A, Krupka J, Červený L (2016) React Kinet Mech Catal 118:235

    Article  Google Scholar 

Download references


We acknowledge grant project GACR 21-02183S and Specific University Research (MSMT No 21-SVV/2021). J. Trejbal is acknowledged for calculation of CO2 solubility. This work was supported from the grant of Specific university research—Grant No A1_FCHT_2021_005. We acknowledge M. Lhotka for nitrogen physisorption measurement.


The authors have not disclosed any funding.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eliska Vyskočilová.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5399 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vyskočilová, E., Šafařík, D., Zítová, K. et al. Efficient Catalyst Based on Pyridinium Modified MCM-41 for Carbon Dioxide Utilization. Catal Lett (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Styrene oxide
  • Carbon dioxide
  • Pyridine
  • MCM-41