Skip to main content
Log in

High Efficiency Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol Over Metallic Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Development of simple and high performance solid catalysts for the utilization of biomass has become an important research topic in heterogeneous catalysis and sustainable chemistry. Herein, a highly efficient catalytic system was studied for the catalytic transfer hydrogenation of furfural to high value furfuryl alcohol over a series of acidic or basic oxides catalysts. Among those oxides, acidic Al2O3 is identified as the most effective for FAL production, giving a FUR conversion as high as 40% (FUR consumption rate was 186 mmol gcat−1 h−1) and FAL selectivity of 99% after only 5 min at 150 °C using 2-propanol as the H-donor and solvent. Furthermore, the as prepared Al2O3 give an Ea value of 15.2 kJ/mol, which is much lower than other complex catalysts in the literatures. Correlating the catalyst performance with its physical and chemical properties uncovers that the large specific surface area and high acidity of Al2O3 would be the key to the catalyst performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Li JQ (2001) Chem Eng J 81:338–339

    Article  CAS  Google Scholar 

  2. Li X, Jia P, Wang T (2016) ACS Catal 6:7621–7640

    Article  CAS  Google Scholar 

  3. Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez Granados M (2016) Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  4. Villaverde MM, Bertero NM, Garetto TF, Marchi AJ (2013) Catal Today 213:87–92

    Article  CAS  Google Scholar 

  5. Gong W, Chen C, Zhang H, Zhang Y, Zhang Y, Wang G, Zhao H (2017) Mol Catal 429:51–59

    Article  CAS  Google Scholar 

  6. Song S, Guo H, Yin G (2011) Catal Commun 12:731–733

    Article  Google Scholar 

  7. Guo H, Yin G (2011) J Phys Chem C 115:17516–17522

    Article  CAS  Google Scholar 

  8. Li X, Ho B, Zhang Y (2016) Green Chem 18:2976–2980

    Article  CAS  Google Scholar 

  9. Tong X, Liu Z, Yu L, Li Y (2015) Chem Commun 51:3674–3677

    Article  CAS  Google Scholar 

  10. Tong X, Liu Z, Hu J, Liao S (2016) Appl Catal A 510:196–203

    Article  CAS  Google Scholar 

  11. Liu Z, Tong X, Liu J, Xue S (2016) Catal Sci Technol 6:1214–1221

    Article  CAS  Google Scholar 

  12. Wan W, Jenness GR, Xiong K, Vlachos DG, Chen JG (2017) ChemCatChem 9:1701–1707

    Article  CAS  Google Scholar 

  13. Manzoli M, Menegazzo F, Signoretto M, Cruciani G, Pinna F (2015) J Catal 330:465–473

    Article  CAS  Google Scholar 

  14. Signoretto M, Menegazzo F, Contessotto L, Pinna F, Manzoli M, Boccuzzi F (2013) Appl Catal B 129:287–293

    Article  CAS  Google Scholar 

  15. Cai CM, Zhang T, Kumar R, Wyman CE (2014) J Chem Technol Biotechnol 89:2–10

    Article  CAS  Google Scholar 

  16. Adkins H (2004) Org React 8:1–27

    Google Scholar 

  17. Yu W, Tang Y, Mo L, Ping C, Hui L, Zheng X (2011) Bioresour Technol 102:8241–8246

    Article  CAS  PubMed  Google Scholar 

  18. Merlo AB, Vetere V, Ruggera JF, Casella ML (2009) Catal Commun 10:1665–1669

    Article  CAS  Google Scholar 

  19. Johnstone RA, Wilby AH, Entwistle ID (1985) Chem Rev 85:129–170

    Article  CAS  Google Scholar 

  20. Neeli CKP, Chung Y-M, Ahn W-S (2017) ChemCatChem 9:4570–4579

    Article  CAS  Google Scholar 

  21. García-Sancho C, Jiménez-Gómez CP, Viar-Antuñano N, Cecilia JA, Moreno-Tost R, Mérida-Robles JM, Requies J, Maireles-Torres P (2021) Appl Catal A 609:117905–117918

    Article  Google Scholar 

  22. Scholz D, Aellig C, Hermans I (2014) Chemsuschem 7:268–275

    Article  CAS  PubMed  Google Scholar 

  23. Reddy Kannapu HP, Mullen CA, Elkasabi Y, Boateng AA (2015) Fuel Process Technol 137:220–228

    Article  CAS  Google Scholar 

  24. Li J, Liu JL, Zhou HJ, Fu Y (2016) Chemsuschem 9:1339–1347

    Article  CAS  PubMed  Google Scholar 

  25. Li H, He J, Riisager A, Saravanamurugan S, Song B, Yang S (2016) ACS Catal 6:7722–7727

    Article  CAS  Google Scholar 

  26. He J, Schill L, Yang S, Riisager A (2018) ACS Sustain Chem Eng 6:17220–17229

    Article  CAS  Google Scholar 

  27. He J, Li H, Riisager A, Yang S (2018) ChemCatChem 10:430–438

    Article  CAS  Google Scholar 

  28. Chen H, Ruan H, Lu X, Fu J, Langrish T, Lu X (2018) Mol Catal 445:94–101

    Article  CAS  Google Scholar 

  29. Xiao P, Zhu J, Zhao D, Zhao Z, Zaera F, Zhu Y (2019) ACS Appl Mater Interfaces 11:15517–15527

    Article  CAS  PubMed  Google Scholar 

  30. Xu G, Liu C, Hu A, Xia Y, Wang H, Liu X (2019) Mol Catal 475:110384

    Article  CAS  Google Scholar 

  31. Ma M, Hou P, Cao J, Liu H, Yan X, Xu X, Yue H, Tian G, Feng S (2019) Green Chem 21:5969–5979

    Article  CAS  Google Scholar 

  32. Ma M, Hou P, Zhang P, Cao J, Liu H, Yue H, Tian G, Feng S (2020) Appl Catal A 602:117709–117718

    Article  CAS  Google Scholar 

  33. Kumar A, Srivastava R (2020) ACS Sustain Chem Eng 8:9497–9506

    Article  CAS  Google Scholar 

  34. Ramos R, Peixoto AF, Arias-Serrano BI, Soares OSGP, Pereira MFR, Kubička D, Freire C (2020) ChemCatChem 12:1467–1475

    Article  CAS  Google Scholar 

  35. Li F, Jiang S, Huang J, Wang Y, Lu S, Li C (2020) New J Chem 44:478–486

    Article  CAS  Google Scholar 

  36. Qiu M, Guo T, Xi R, Li D, Qi X (2020) Appl Catal A 602:117719–117725

    Article  CAS  Google Scholar 

  37. Gao Z-K, Hong Y-C, Hu Z, Xu B-Q (2017) Catal Sci Technol 7:4511–4519

    Article  CAS  Google Scholar 

  38. Wang H, Liu B, Liu F, Wang Y, Lan X, Wang S, Ali B, Wang T (2020) ACS Sustain Chem Eng 8:8195–8205

    Article  CAS  Google Scholar 

  39. Wang F, Ta N, Shen W (2014) Appl Catal, A 475:76–81

    Article  CAS  Google Scholar 

  40. Mei C, Dumesic JA (2011) Chem Commun 47:12233–12235

    Article  Google Scholar 

  41. Tang X, Hu L, Sun Y, Zhao G, Hao W, Lin L (2013) RSC Adv 3:10277–10284

    Article  CAS  Google Scholar 

  42. Komanoya T, Nakajima K, Kitano M, Hara M (2015) J Phys Chem C 119:26540–26546

    Article  CAS  Google Scholar 

  43. Heidari H, Abedini M, Nemati A, Amini MM (2009) Catal Lett 130:266–270

    Article  CAS  Google Scholar 

  44. Aramendı́a MA, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano FJ (2003) Appl Catal A 244:207–215.

  45. Miñambres JF, Aramendía MA, Marinas A, Marinas JM, Urbano FJ (2011) J Mol Catal A: Chem 338:121–129

    Google Scholar 

  46. Vingurt D, Fuks D, Landau MV, Vidruk R, Herskowitz M (2013) Phys Chem Chem Phys 15:14783–14796

    Article  CAS  PubMed  Google Scholar 

  47. Yu Z, Lu X, Wang X, Xiong J, Li X, Zhang R, Ji N (2020) Chemsuschem 13:5185–5198

    Article  CAS  PubMed  Google Scholar 

  48. Gilkey MJ, Panagiotopoulou P, Mironenko AV, Jenness GR, Vlachos DG, Xu B (2015) ACS Catal 5:3988–3994

    Article  CAS  Google Scholar 

  49. Zhang J, Liu Y, Yang S, Wei J, He L, Peng L, Tang X, Ni Y (2020) ACS Sustain Chem Eng 8:5584–5594

    Article  CAS  Google Scholar 

  50. Gliński M, Czajka A, Ulkowska U (2015) React Kinet Mech Catal 114:279–294

    Article  Google Scholar 

  51. López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2018) Appl Catal A 556:1–9

    Article  Google Scholar 

  52. Li F, France LJ, Cai Z, Li Y, Liu S, Lou H, Long J, Li X (2017) Appl Catal B 214:67–77

    Article  CAS  Google Scholar 

  53. Jiang S, Li F, Huang J, Wang Y, Lu S, Li P, Li C (2020) ChemistrySelect 5:9883–9892

    Article  CAS  Google Scholar 

  54. Vasanthakumar P, Sindhuja D, Senthil Raja D, Lin C-H, Karvembu R (2020) New J Chem 44:8223–8231

    Article  CAS  Google Scholar 

  55. Xiao P, Xuelian X, Wang S, Zhu J, Zhu Y (2020) Appl Catal A 603:117742–117749

    Article  CAS  Google Scholar 

  56. Ponndorf W (1926) Angew Chem 39:138–143

    Article  CAS  Google Scholar 

  57. Tang X, Chen H, Hu L, Hao W, Sun Y, Zeng X, Lin L, Liu S (2014) Appl Catal B 147:827–834

    Article  CAS  Google Scholar 

  58. Zhu Y, Liu S, Jaenicke S, Chuah G (2004) Catal Today 97:249–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21878027), Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2020-08), Natural Science Foundation of the Jiangsu Higher Education Institutions (18KJA150001) and the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zonghui Liu or Bing Xue.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, Z., Wen, Z. et al. High Efficiency Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol Over Metallic Oxide Catalyst. Catal Lett 152, 3537–3547 (2022). https://doi.org/10.1007/s10562-022-03924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03924-5

Keywords

Navigation