Abstract
Herein, we investigated the activation and stabilization of Pd nanoparticles using microparticles of chitosan-functionalized with phosphine moieties. The catalytic activity of the prepared material was assessed in a series of Heck reactions, which demonstrated the potential of our catalyst concerning yields and reaction scope. Comparative experiments confirmed the superior performance of the phosphine-modified material with respect to a similar catalyst derived from non-functionalized chitosan. Finally, the prepared catalyst also exhibited appreciable activity even after four consecutive reaction runs, with minimal loss of Pd by leaching.
Graphical Abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Bavykina A, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon. 2020 Chem Rev Doi: https://doi.org/10.1021/acs.chemrev.9b00685
Dzhardimalieva GI, Zharmagambetova AK, Kudaibergenov SE, Uflyand IE (2020). Kinetic Catal. https://doi.org/10.1134/s0023158420020044
Sudarsanam P, Zhong RY, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018). Chem Soc Rev. https://doi.org/10.1039/c8cs00410b
Singh BK, Lee S, Na K (2020). Rare Metal. https://doi.org/10.1007/s12598-019-01205-6
Hong M, Sajjadi JM, Suh K, Zhang M, Nasrollahzadeh, H.W.Jang et al (2020). ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.9b02017
Malkar RS, Jadhav AL, Yadav GD (2020). Mol Catal. https://doi.org/10.1016/j.mcat.2020.110814
Yang QH, Xu Q, Jiang HL (2017). Chem Soc Rev. https://doi.org/10.1039/c6cs00724d
Souza JF, Costa GP, Luque R, Alves D, Fajardo AR (2019). Catal Sci Techn. https://doi.org/10.1039/c8cy01796d
Gao SJ, Hao SY, Huang ZN, Yuan YF, Han S, Lei LC et al (2020). Nat Commun. https://doi.org/10.1038/s41467-020-15934-1
Ndolomingo MJ, Bingwa N, Meijboom R (2020). J Mat Sci. https://doi.org/10.1007/s10853-020-04415-x
Wang KX, Yang LP, Zhao WL, Cao LQ, Sun ZL, Zhang F (2017). Green Chem. https://doi.org/10.1039/c7gc00219j
Nasrollahzadeh M, Shafiei N, Nezafat Z, Bidgoli NSS, Soleimani F (2020). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116353
Younes I, Rinaudo M. 2015 Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs 13(3): e1133
Zhang L, Zeng YX, Cheng ZJ (2016). J Mol Liquid. https://doi.org/10.1016/j.molliq.2015.12.013
Ling YZ, Zeng XJ, Tan WR, Luo JW, Liu SJ (2015). J Alloy Compound. https://doi.org/10.1016/j.jallcom.2015.06.110
Eisa WH, Abdelnaby T, Mostafa S, Elzayat MY (2018). Adv Polym Technol. https://doi.org/10.1002/adv.2186
Shahbazi E, Bahrami K (2020). ChemistrySelect. https://doi.org/10.1002/slct.202000754
Zheng X, Zhao J, Xu MD, Zeng MF (2020). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2019.115583
Dong YH, Bi JJ, Ming SJ, Zhang ST, Zhu DJ, Meng D et al (2021). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.117815
Martin R, Buchwald SL (2008). Account Chem Res. https://doi.org/10.1021/ar800036s
Du DW, Li YQ (2012). Res Chem Intermediate. https://doi.org/10.1007/s11164-012-0504-2
Arguelles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Polym. Gel. Network. https://doi.org/10.1016/s0966-7822(98)00032-x
Liang LL, Nie L, Jiang MJ, Bie FS, Shao LJ, Qi CZ et al (2018). New J Chem. https://doi.org/10.1039/c8nj02183j
Heux L, Brugnerotto J, Desbrieres J, Versali MF, Rinaudo M (2000). Biomacromol. https://doi.org/10.1021/bm000070y
Henderson W, Olsen GM, Bonnington LS (1994). J Chem Soc-Chem Commun. https://doi.org/10.1039/c39940001863
Lindner E, Steinwand M, Hoehne SP (1982). Chem Ber Recl. https://doi.org/10.1002/cber.19821150614
de Souza JF, da Silva GT, Fajardo AR (2017). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2017.01.018
Zhang CJ, Lu D, Jiang PP, Li JJ, Leng Y (2017). Cat Lett. https://doi.org/10.1007/s10562-017-2174-6
Fareghi-Alamdari R, Haqiqi MG, Zekri N (2016). New J Chem. https://doi.org/10.1039/c5nj02227d
Demetgul C (2008). S Serin S Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2007.09.020
Liu C, Thormann E, Claesson PM, Tyrode E (2014) Surface Grafted Chitosan Gels Part II. Gel Formation and Characterization. Langmuir 30(29):8878–88. https://doi.org/10.1021/la501319r
Li B, Shan CL, Zhou Q, Fang Y, Wang YL, Xu F et al (2013) Synthesis. Mar Drug. https://doi.org/10.3390/md11051534
S.B. Khan. 2020 Carbohyd Polym Doi: https://doi.org/10.1016/j.carbpol.2020.11628
Wang GS, Lv K, Chen T, Chen ZP, Hu JS (2021). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.06.055
Lei YZ, Chen ZF, Lan GS, Wang RS, Zhou XY (2020). New J Chem. https://doi.org/10.1039/c9nj05734j
Hajipour AR, Tavangar-Rizi Z (2017). Appl Organomet Chem. https://doi.org/10.1002/aoc.3701
M. Adlim, M. Abu Bakar, K.Y. Liew, J. Ismail J. 2004 J. Mol. Catal Doi: https://doi.org/10.1016/j.molcata.2003.08.012
Aryanasab F, Shabanian M, Laoutid F, Vahabi H (2021). Appl Organomet Chem. https://doi.org/10.1002/aoc.6198
Kumar D, Pandey J, Kumar P (2018). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.10.002
Ziegler-Borowska M, Chelminiak D, Kaczmarek H, Kaczmarek-Kedziera A (2016). J Thermal Anal Calor. https://doi.org/10.1007/s10973-016-5260-x
Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2005.02.022
Guo M, Li H, Ren YQ, Ren XM, Yang QH (2018). C Li C ACS Catal. https://doi.org/10.1021/acscatal.8b00872
Sherwood J, Clark JH, Fairlamb IJS, Slattery JM (2019). Green Chem. https://doi.org/10.1039/c9gc00617f
Kozell V, Giannoni T, Nocchetti M, Vivani R, Piermatti O, Vaccaro L (2017). Catalysts. https://doi.org/10.3390/catal7060186
Petrucci C, Cappelletti M, Piermatti O, Nocchetti M, Pica M, Pizzo F et al (2015). J Mol Catal A. https://doi.org/10.1016/j.molcata.2015.02.012
Hansch C, Leo A, Taft RW (1991). A Chem Rev. https://doi.org/10.1021/cr00002a004
Goodman ED, Schwalbe JA, Cargnello M (2017). ACS Catal. https://doi.org/10.1021/acscatal.7b01975
Luo ZX, Wang N, Pei XY, Dai T, Zhao ZG, Chen CM et al (2021). J Mat Sci Tech. https://doi.org/10.1016/j.jmst.2020.12.035
Hosseini-Sarvari M, Razmi Z, Doroodmand MM (2014). Appl Cat A. https://doi.org/10.1016/j.apcata.2014.02.002
Lakshminarayana B, Mahendar L, Ghosal P, Satyanarayana G, Subrahmanyam C (2017). ChemistrySelect. https://doi.org/10.1002/slct.201602051
Acknowledgements
The authors are thankful to CNPq (Process 404744/2018-4). A.R.F. also thanks CNPq for his PQ fellowship (Process 303872/2019-5). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES/Proap), Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
de Souza, J.F., Lemos, T.S.A., Biajoli, A.F.P. et al. Phosphine-Functionalized Chitosan Microparticles as Support Materials for Palladium Nanoparticles in Heck Reactions. Catal Lett 152, 2933–2946 (2022). https://doi.org/10.1007/s10562-021-03914-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10562-021-03914-z