Skip to main content

CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single- or Dual-Active Site Mechanism


CO2 hydrogenation to CH3OH via heterogeneous catalysis is one of the most promising and available approaches for mitigation of anthropogenic CO2 issues. In this work, thermodynamic equilibria of CO2 to methanol were compared with experimental results at given conditions using a commercial Cu/ZnO/Al2O3 catalyst for CO hydrogenation to methanol. It was found that, the high pressure, low temperature, and high H2/CO2 ratio are favorable to methanol synthesis from CO2. Furthermore, the kinetic data were measured with an isothermal integral reactor under temperature between 160 and 240 °C, lower than that for CO hydrogenation to methanol reaction. Based on the single-active site and dual-active site LH mechanisms, both kinetic models can achieve full illustration of the influence of the operating conditions and the mechanisms. According to comparative analysis of the error variances of model correlations and the adsorbate coverages on the active sites, the dual-site mechanism identified to be superior to the single-site one for methanol synthesis from CO2 feedstock. Overall, this paper provides fundamental understanding of the thermodynamic and kinetic aspects of a central route for CO2 Valorisation.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12



The pre-exponent constant


Activation energy or heat of adsorption

H2/CO2 :

The ratio of H2 to CO2


Kinetic constant


Pressure, bar




Temperature, °C


Conversion Rate

\({X}_{{CO}_{2}}^{eq}\) :

Thermodynamic equilibrium conversion of CO2


Ratio of regression mean square sum to model residual mean square sum

\({X}_{{CO}_{2}}\) :

Conversion of CO2


Selectivity of CO

\({S}_{{CH}_{3}OH}\) :

Selectivity of CH3OH

\({W}_{cat}\) :

Loading quality of catalyst of Reactor inlet, g

rm :

The rate of reaction m, m = 1,2,mmol·g1·min1

vm,i :

The measurement coefficient of component i in reaction m


  1. Lindsey R, Dlugokencky E (Oct 2021) Climate Change: Atmospheric Carbon Dioxide.

  2. Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier JP, Chen Z, Huang MT, Li LZX, Li Y, Liu H, Liu J, Peng S, Shen Z, Sun Z, Wang R, Wang T, Yin G, Yin Y, Zeng H, Zeng Z, Zhou F (2016) The contribution of China’s emissions to global climate forcing. Nature 531:357–361.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40:178–187.

    Article  PubMed  Google Scholar 

  4. Szulejko JE, Kumar P, Deep A, Kim KH (2017) Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos Pollu Res 8:136–140.

    Article  Google Scholar 

  5. Hepburn C, Adlen R, Beddington J, Carter EA, Fuss S, Dowell NM, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–96.

    Article  CAS  PubMed  Google Scholar 

  6. Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger JC, Amal R, He H, Park SE (2020) Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 49:8584–8686.

    Article  CAS  PubMed  Google Scholar 

  7. Kamkeng ADN, Wang M, Hu J, Du WL, Qian F (2021) Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem Eng J 409:128138.

    Article  CAS  Google Scholar 

  8. Jiang K, Ashworth P, Zhang S, Liang X, Sun Y (2020) China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew Sust Energ Rev 119:109601.

    Article  Google Scholar 

  9. Olah GA (2005) Beyond oil and gas: The methanol economy. Angew Chem Int Edit 44:2636–2639.

    Article  CAS  Google Scholar 

  10. Stephan DW (2013) A step closer to a methanol economy. Nature 495:54–55.

    Article  CAS  PubMed  Google Scholar 

  11. Dalena F, Senatore A, Marino A, Gordano A, Basile M, Basile A (2018) Methanol Science and Engineering. Elsevier, Amsterdam

    Google Scholar 

  12. Zhong JW, Yang XF, Wu ZL, Liang BL, Huang YQ, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49:1385–1413.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L (2021) Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts. Catal Sci Technol 11:1665–1697.

    Article  CAS  Google Scholar 

  14. Navarro-Jaén S, Virginie M, Bonin J, Robert M, Wojcieszak R, Khodakov AY (2021) Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 5:566–581.

    Article  CAS  Google Scholar 

  15. Rivera-Tinoco R, Farran M, Bouallou C, Aupretre F, Valentin S, Millet P, Ngameni JR (2016) Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. Inter J Hydro Energy 41:4546–4549.

    Article  CAS  Google Scholar 

  16. Bos MJ, Kersten SRA, Brilman DWF (2020) Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl Energy 264:114672.

    Article  CAS  Google Scholar 

  17. Lonis F, Tola V, Cau G (2021) Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 hydrogenation. Fuel 285:119160.

    Article  CAS  Google Scholar 

  18. Biernacki P, Rother T, Paul W, Werner P, Steinigeweg S (2018) Environmental impact of the excess electricity conversion into methanol. J Clean Prod 191:87–98.

    Article  CAS  Google Scholar 

  19. Kim H, Kim A, Byun M, Lim H (2021) Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances. Renew Energy 180:552–559.

    Article  CAS  Google Scholar 

  20. Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond Oil and Gas: The Methanol Economy. Wiley, Hoboken

    Book  Google Scholar 

  21. Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JF, Norskov JK (2012) CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. J Catal 293:51–60.

    Article  CAS  Google Scholar 

  22. Pokrovski KA, Bell AT (2006) An investigation of the factors influencing the activity of Cu/CexZr1− xO2 for methanol synthesis via CO hydrogenation. J Catal 241:276–286.

    Article  CAS  Google Scholar 

  23. Pokrovski KA, Bell AT (2006) Effect of dopants on the activity of Cu/M0. 3Zr0. 7O2 (M= Ce, Mn, and Pr) for CO hydrogenation to methanol. J Catal 244:43–51.

    Article  CAS  Google Scholar 

  24. Graaf GH, Stamhuis EJ, Beenackers AACM (1988) Kinetics of low-pressure methanol synthesis. Chem Eng Sci 43:3185–3195.

    Article  CAS  Google Scholar 

  25. Bussche KV, Froment G (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. J Catal 161:1–10.

    Article  Google Scholar 

  26. Ovesen CV, Clausen BS, Schiøtz J, Stoltze P, Topsøe H, Nørskov JK (1997) Kinetic implications of dynamical changes in catalyst morphology during methanol synthesis over Cu/ZnO catalysts. J Catal 168:133–142.

    Article  CAS  Google Scholar 

  27. Park N, Park MJ, Lee YJ, Ha KS, Jun KW (2014) Kinetic modeling of methanol synthesis over commercial catalysts based on three-site adsorption. Fuel Process Technol 125:139–147.

    Article  CAS  Google Scholar 

  28. Seidel C, Jörke A, Vollbrecht B, Seidel-Morgenstern A, Kienle A (2018) Kinetic modeling of methanol synthesis from renewable resources. Chem Eng Sci 175:130–138.

    Article  CAS  Google Scholar 

  29. Ledakowicz S, Nowicki L, Petera J, Niziol J, Kowalik P, Golebiowski A (2013) Kinetic characterisation of catalysts for methanol synthesis. Chem Process Enginz 34:497–506.

    Article  CAS  Google Scholar 

  30. Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger A (2016) Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper–zinc oxide catalysts with alumina or zirconia supports. Catal Today 270:31–42.

    Article  CAS  Google Scholar 

  31. Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Norskov JK, Chorkendorff I (1994) Methanol synthesis on Cu (100) from a binary gas mixture of CO2 and H2. Catal Lett 26:373–381.

    Article  CAS  Google Scholar 

  32. Portha JF, Parkhomenko K, Kobl K, Roger AC, Arab S, Commenge JM, Falk L (2017) Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper–zinc oxide catalysts. Ind Eng Chem Res 56:13133–13145.

    Article  CAS  Google Scholar 

  33. Chinchen GC, Waugh KC, Whan DA (1986) The activity and state of the copper surface in methanol synthesis catalysts. Appl Catal 25:101–107.

    Article  CAS  Google Scholar 

  34. Clarke DB, Bell AT (1995) An infrared study of methanol synthesis from CO2 on clean and potassium-promoted Cu/SiO2. J Catal 154:314–328.

    Article  CAS  Google Scholar 

  35. Graaf GH, Sijtsema P, Stamhuis EJ, Joosten GEH (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41:2883–2890.

    Article  CAS  Google Scholar 

  36. Yoshihara J, Parker SC, Schafer A, Campbell CT (1995) Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper. Catal Lett 31:313–324.

    Article  CAS  Google Scholar 

  37. Ayastuy JL, Gutie´rrez-Ortiz MA, Gonza´lez-Marcos JA, Aranzabal A, Gonza´lez-Velasco JR (2005) Kinetics of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst. Ind Eng Chem Res 44:1–50.

    Article  CAS  Google Scholar 

  38. Mendes D, Chibante V, Mendes A, Madeira LM (2010) Determination of the low-temperature water-gas shift reaction kinetics using a Cu-based catalyst. Ind Eng Chem Res 49(2010):11269–11279.

    Article  CAS  Google Scholar 

  39. Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA (2011) Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. J Catal 281:1–11.

    Article  CAS  Google Scholar 

  40. Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J Catal 328:43–48.

    Article  CAS  Google Scholar 

  41. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl Catal 30:333–338.

    Article  CAS  Google Scholar 

  42. Karelovic A, Ruiz P (2015) The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catal Sci Technol 5:869–881.

    Article  CAS  Google Scholar 

  43. Słoczyński J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J (2006) Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl Catal A 310:127–137.

    Article  CAS  Google Scholar 

  44. Chou CY, Lobo RF (2019) Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Appl Catal A 583:117144.

    Article  CAS  Google Scholar 

  45. Choi Y, Futagami K, Fujitani T, Nakamura J (2001) The role of ZnO in Cu/ZnO methanol synthesis catalysts—morphology effect or active site model. Appl Catal A 208:163–167.

    Article  CAS  Google Scholar 

Download references


The authors would like to thank the 2019 Key Technology Project of Inner Mongolia (No. 2019GG311, China), and Royal Society Research Grant (No. RSRG1180353, UK) for supporting this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wen-De Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HX., Yang, LQQ., Chi, ZY. et al. CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single- or Dual-Active Site Mechanism. Catal Lett 152, 3110–3124 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: