Abstract
CO2 hydrogenation to CH3OH via heterogeneous catalysis is one of the most promising and available approaches for mitigation of anthropogenic CO2 issues. In this work, thermodynamic equilibria of CO2 to methanol were compared with experimental results at given conditions using a commercial Cu/ZnO/Al2O3 catalyst for CO hydrogenation to methanol. It was found that, the high pressure, low temperature, and high H2/CO2 ratio are favorable to methanol synthesis from CO2. Furthermore, the kinetic data were measured with an isothermal integral reactor under temperature between 160 and 240 °C, lower than that for CO hydrogenation to methanol reaction. Based on the single-active site and dual-active site LH mechanisms, both kinetic models can achieve full illustration of the influence of the operating conditions and the mechanisms. According to comparative analysis of the error variances of model correlations and the adsorbate coverages on the active sites, the dual-site mechanism identified to be superior to the single-site one for methanol synthesis from CO2 feedstock. Overall, this paper provides fundamental understanding of the thermodynamic and kinetic aspects of a central route for CO2 Valorisation.
Graphical Abstract

This is a preview of subscription content, access via your institution.












Abbreviations
- A(i):
-
The pre-exponent constant
- B(i):
-
Activation energy or heat of adsorption
- H2/CO2 :
-
The ratio of H2 to CO2
- Ki:
-
Kinetic constant
- P:
-
Pressure, bar
- S:
-
Selectivity
- T:
-
Temperature, °C
- X:
-
Conversion Rate
- \({X}_{{CO}_{2}}^{eq}\) :
-
Thermodynamic equilibrium conversion of CO2
- F:
-
Ratio of regression mean square sum to model residual mean square sum
- \({X}_{{CO}_{2}}\) :
-
Conversion of CO2
- SCO :
-
Selectivity of CO
- \({S}_{{CH}_{3}OH}\) :
-
Selectivity of CH3OH
- \({W}_{cat}\) :
-
Loading quality of catalyst of Reactor inlet, g
- rm :
-
The rate of reaction m, m = 1,2,mmol·g−1·min−1
- vm,i :
-
The measurement coefficient of component i in reaction m
References
Lindsey R, Dlugokencky E (Oct 2021) https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. Climate Change: Atmospheric Carbon Dioxide.
Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier JP, Chen Z, Huang MT, Li LZX, Li Y, Liu H, Liu J, Peng S, Shen Z, Sun Z, Wang R, Wang T, Yin G, Yin Y, Zeng H, Zeng Z, Zhou F (2016) The contribution of China’s emissions to global climate forcing. Nature 531:357–361. https://doi.org/10.1038/nature17165
Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40:178–187. https://doi.org/10.1016/j.endeavour.2016.07.002
Szulejko JE, Kumar P, Deep A, Kim KH (2017) Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos Pollu Res 8:136–140. https://doi.org/10.1016/j.apr.2016.08.002
Hepburn C, Adlen R, Beddington J, Carter EA, Fuss S, Dowell NM, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–96. https://doi.org/10.1038/s41586-019-1681-6
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger JC, Amal R, He H, Park SE (2020) Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 49:8584–8686. https://doi.org/10.1039/D0CS00025F
Kamkeng ADN, Wang M, Hu J, Du WL, Qian F (2021) Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem Eng J 409:128138. https://doi.org/10.1016/j.cej.2020.128138
Jiang K, Ashworth P, Zhang S, Liang X, Sun Y (2020) China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew Sust Energ Rev 119:109601. https://doi.org/10.1016/j.rser.2019.109601
Olah GA (2005) Beyond oil and gas: The methanol economy. Angew Chem Int Edit 44:2636–2639. https://doi.org/10.1002/anie.200462121
Stephan DW (2013) A step closer to a methanol economy. Nature 495:54–55. https://doi.org/10.1038/nature11955
Dalena F, Senatore A, Marino A, Gordano A, Basile M, Basile A (2018) Methanol Science and Engineering. Elsevier, Amsterdam
Zhong JW, Yang XF, Wu ZL, Liang BL, Huang YQ, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49:1385–1413. https://doi.org/10.1039/C9CS00614A
Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L (2021) Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts. Catal Sci Technol 11:1665–1697. https://doi.org/10.1039/D0CY01913E
Navarro-Jaén S, Virginie M, Bonin J, Robert M, Wojcieszak R, Khodakov AY (2021) Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 5:566–581. https://doi.org/10.1038/s41570-021-00289-y
Rivera-Tinoco R, Farran M, Bouallou C, Aupretre F, Valentin S, Millet P, Ngameni JR (2016) Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. Inter J Hydro Energy 41:4546–4549. https://doi.org/10.1016/j.ijhydene.2016.01.059
Bos MJ, Kersten SRA, Brilman DWF (2020) Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl Energy 264:114672. https://doi.org/10.1016/j.apenergy.2020.114672
Lonis F, Tola V, Cau G (2021) Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 hydrogenation. Fuel 285:119160. https://doi.org/10.1016/j.fuel.2020.119160
Biernacki P, Rother T, Paul W, Werner P, Steinigeweg S (2018) Environmental impact of the excess electricity conversion into methanol. J Clean Prod 191:87–98. https://doi.org/10.1016/j.jclepro.2018.04.232
Kim H, Kim A, Byun M, Lim H (2021) Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances. Renew Energy 180:552–559. https://doi.org/10.1016/j.renene.2021.08.077
Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond Oil and Gas: The Methanol Economy. Wiley, Hoboken
Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JF, Norskov JK (2012) CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. J Catal 293:51–60. https://doi.org/10.1016/j.jcat.2012.06.004
Pokrovski KA, Bell AT (2006) An investigation of the factors influencing the activity of Cu/CexZr1− xO2 for methanol synthesis via CO hydrogenation. J Catal 241:276–286. https://doi.org/10.1016/j.jcat.2006.05.002
Pokrovski KA, Bell AT (2006) Effect of dopants on the activity of Cu/M0. 3Zr0. 7O2 (M= Ce, Mn, and Pr) for CO hydrogenation to methanol. J Catal 244:43–51. https://doi.org/10.1016/j.jcat.2006.07.031
Graaf GH, Stamhuis EJ, Beenackers AACM (1988) Kinetics of low-pressure methanol synthesis. Chem Eng Sci 43:3185–3195. https://doi.org/10.1016/0009-2509(88)85127-3
Bussche KV, Froment G (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. J Catal 161:1–10. https://doi.org/10.1006/jcat.1996.0156
Ovesen CV, Clausen BS, Schiøtz J, Stoltze P, Topsøe H, Nørskov JK (1997) Kinetic implications of dynamical changes in catalyst morphology during methanol synthesis over Cu/ZnO catalysts. J Catal 168:133–142. https://doi.org/10.1006/jcat.1997.1629
Park N, Park MJ, Lee YJ, Ha KS, Jun KW (2014) Kinetic modeling of methanol synthesis over commercial catalysts based on three-site adsorption. Fuel Process Technol 125:139–147. https://doi.org/10.1016/j.fuproc.2014.03.041
Seidel C, Jörke A, Vollbrecht B, Seidel-Morgenstern A, Kienle A (2018) Kinetic modeling of methanol synthesis from renewable resources. Chem Eng Sci 175:130–138. https://doi.org/10.1016/j.ces.2017.09.043
Ledakowicz S, Nowicki L, Petera J, Niziol J, Kowalik P, Golebiowski A (2013) Kinetic characterisation of catalysts for methanol synthesis. Chem Process Enginz 34:497–506. https://doi.org/10.2478/cpe-2013-0040
Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger A (2016) Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper–zinc oxide catalysts with alumina or zirconia supports. Catal Today 270:31–42. https://doi.org/10.1016/j.cattod.2015.11.020
Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Norskov JK, Chorkendorff I (1994) Methanol synthesis on Cu (100) from a binary gas mixture of CO2 and H2. Catal Lett 26:373–381. https://doi.org/10.1007/BF00810611
Portha JF, Parkhomenko K, Kobl K, Roger AC, Arab S, Commenge JM, Falk L (2017) Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper–zinc oxide catalysts. Ind Eng Chem Res 56:13133–13145. https://doi.org/10.1021/acs.iecr.7b01323
Chinchen GC, Waugh KC, Whan DA (1986) The activity and state of the copper surface in methanol synthesis catalysts. Appl Catal 25:101–107. https://doi.org/10.1016/S0166-9834(00)81226-9
Clarke DB, Bell AT (1995) An infrared study of methanol synthesis from CO2 on clean and potassium-promoted Cu/SiO2. J Catal 154:314–328. https://doi.org/10.1006/jcat.1995.1173
Graaf GH, Sijtsema P, Stamhuis EJ, Joosten GEH (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41:2883–2890. https://doi.org/10.1016/0009-2509(86)80019-7
Yoshihara J, Parker SC, Schafer A, Campbell CT (1995) Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper. Catal Lett 31:313–324. https://doi.org/10.1007/BF00808595
Ayastuy JL, Gutie´rrez-Ortiz MA, Gonza´lez-Marcos JA, Aranzabal A, Gonza´lez-Velasco JR (2005) Kinetics of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst. Ind Eng Chem Res 44:1–50. https://doi.org/10.1021/ie049886w
Mendes D, Chibante V, Mendes A, Madeira LM (2010) Determination of the low-temperature water-gas shift reaction kinetics using a Cu-based catalyst. Ind Eng Chem Res 49(2010):11269–11279. https://doi.org/10.1021/ie101137b
Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA (2011) Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. J Catal 281:1–11. https://doi.org/10.1016/j.jcat.2011.03.008
Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J Catal 328:43–48. https://doi.org/10.1016/j.jcat.2014.12.016
Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl Catal 30:333–338. https://doi.org/10.1016/s0166-9834(00)84123-8
Karelovic A, Ruiz P (2015) The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catal Sci Technol 5:869–881. https://doi.org/10.1039/C4CY00848K
Słoczyński J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J (2006) Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl Catal A 310:127–137. https://doi.org/10.1016/j.apcata.2006.05.035
Chou CY, Lobo RF (2019) Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Appl Catal A 583:117144. https://doi.org/10.1016/j.apcata.2019.117144
Choi Y, Futagami K, Fujitani T, Nakamura J (2001) The role of ZnO in Cu/ZnO methanol synthesis catalysts—morphology effect or active site model. Appl Catal A 208:163–167. https://doi.org/10.1016/S0926-860X(00)00712-2
Acknowledgements
The authors would like to thank the 2019 Key Technology Project of Inner Mongolia (No. 2019GG311, China), and Royal Society Research Grant (No. RSRG1180353, UK) for supporting this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, HX., Yang, LQQ., Chi, ZY. et al. CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single- or Dual-Active Site Mechanism. Catal Lett 152, 3110–3124 (2022). https://doi.org/10.1007/s10562-021-03913-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10562-021-03913-0