Skip to main content
Log in

A Novel LaAlO3 Perovskite with Large Surface Area Supported Ni-Based Catalyst for Methane Dry Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, the LaAlO3 perovskite with large specific surface area and abundant surface oxygen vacancies is prepared by the hard template method, on which Ni metal nanoparticles and CaO alkaline additives are loaded. The generated catalyst is applied to the study of methane dry reforming. By analyzing and characterizing all catalysts prepared through BET, XRD, TEM, XPS, H2-TPR and other test methods, the LaAlO3 Hperovskite prepared by the hard template method can obtain both larger specific surface area and more abundant surface oxygen vacancies than the LaAlO3-C perovskite prepared by the traditional sol–gel method. As a result, the Ni-based catalysts supported by LaAlO3-H perovskite exhibit more favorable anti-sintering and anti-carbon deposition ability than Ni/LaAlO3-C catalyst. (Adding) CaO can enhance the adsorption of CO2 on Ni-based catalysts, so N-CaO/LaAlO3 catalyst possesses the most excellent anti-carbon deposition ability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh R, Dhir A, Mohapatra SK, Mahla SK (2020) Biomass Convers Bior 10:567–587

    Article  CAS  Google Scholar 

  2. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem C 114:1085–1093

    Article  CAS  Google Scholar 

  3. Jing J-y, Wei Z-h, Zhang Y-b, Bai H-c, Li W-y (2020) Catal Today 356:589–596

    Article  CAS  Google Scholar 

  4. Sun Y, Zhang G, Cheng H, Liu J, Li G (2021) Int J Hydrogen Energy 46:531–542

    Article  CAS  Google Scholar 

  5. Chu S, Cai Z, Wang M, Zheng Y, Wang Y, Zhou Z, Weng W (2020) Nanoscale 12:20922–20932

    Article  CAS  Google Scholar 

  6. Anil C, Modak JM, Madras G (2020) Mol Catal 484.

  7. Pan C, Guo Z, Dai H, Ren R, Chu W (2020) Int J Hydrogen Energy 45:16133–16143

    Article  CAS  Google Scholar 

  8. Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G (2020) J Clean Product 274.

  9. Taherian Z, Khataee A, Orooji Y (2021) J Energy Inst 97:100–108

    Article  CAS  Google Scholar 

  10. Damyanova S, Shtereva I, Pawelec B, Mihaylov L, Fierro JLG (2020) Appl Catal B Environ 278.

  11. Rodriguez-Gomez A, Lopez-Martin A, Ramirez A, Gascon J, Caballero A (2020) ChemCatChem 13:553–563

    Article  Google Scholar 

  12. Li S, Fu Y, Kong W, Pan B, Yuan C, Cai F, Zhu H, Zhang J, Sun Y (2020) Appl Catal B Environ 277.

  13. Das S, Bhattar S, Liu L, Wang Z, Xi S, Spivey JJ, Kawi S (2020) ACS Catal 10:12466–12486

    Article  CAS  Google Scholar 

  14. Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Appl Catal A 286:23–29

    Article  CAS  Google Scholar 

  15. Bai X, Xie G, Guo Y, Tian L, El-Hosainy HM, Awadallah AE, Ji S, Wang Z-J (2021) Catal Today 368:78–85

    Article  CAS  Google Scholar 

  16. Ruan Y, Zhao Y, Lu Y, Guo D, Zhao Y, Wang S, Ma X (2020) Micropor Mesopor Mater 303.

  17. Meshkani F, Rezaei M (2011) Catal Commun 12:1046–1050

    Article  CAS  Google Scholar 

  18. Nair MM, Kaliaguine S, Kleitz F (2014) ACS Catal 4:3837–3846

    Article  CAS  Google Scholar 

  19. Chen C, Meng Z, Wang Z (2019) J Chem 2019:1–9

    Google Scholar 

  20. Lee G, Kim I, Yang I, Ha J-M, Na HB, Jung JC (2018) Appl Surf Sci 429:55–61

    Article  CAS  Google Scholar 

  21. Rivas I, Alvarez J, Pietri E, Pérez-Zurita MJ, Goldwasser MR (2010) Catal Today 149:388–393

    Article  CAS  Google Scholar 

  22. Singh R, Dhir A, Mohapatra SK, Mahla SK (2019) Biomass Convers Bior 10:567–587

    Article  Google Scholar 

  23. Song J, Duan X, Zhang W (2021) Micropor Mesopor Mater 310.

  24. Okutan C, Arbag H, Yasyerli N, Yasyerli S (2020) Int J Hydrogen Energy 45:13911–13928

    Article  CAS  Google Scholar 

  25. Zhang Q, Sun M, Ning P, Long K, Wang J, Tang T, Fan J, Sun H, Yin L, Lin Q (2019) Appl Surf Sci 469:368–377

    Article  CAS  Google Scholar 

  26. Wu P, Tao Y, Ling H, Chen Z, Ding J, Zeng X, Liao X, Stampfl C, Huang J (2019) ACS Catal 9:10060–10069

    Article  CAS  Google Scholar 

  27. Daoura O, Fornasieri G, Boutros M, El Hassan N, Beaunier P, Thomas C, Selmane M, Miche A, Sassoye C, Ersen O, Baaziz W, Massiani P, Bleuzen A, Launay F (2021) Appl Catal B Environ 280.

  28. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) Int J Hydrogen Energy 37:11195–11207

    Article  CAS  Google Scholar 

  29. Han K, Yu W, Xu L, Deng Z, Yu H, Wang F (2021) Fuel 291.

  30. Wang Y, Li L, Cui C, Da. Costa P, Hu C (2021) Catal Today.

  31. Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Catal Today 257:59–65

    Article  Google Scholar 

  32. Dębek R, Motak M, Duraczyska D, Launay F, Galvez ME, Grzybek T, Da Costa P (2016) Catal Sci Technol 6:6705–6715

    Article  Google Scholar 

  33. Lai G-H, Lak JH, Tsai D-H (2019) ACS Appl Energy Mater 2:7963–7971

    Article  CAS  Google Scholar 

  34. Liang TY, Senthil Raja D, Chin KC, Huang CL, Sethupathi SA, Leong LK, Tsai DH, Lu SY (2020) ACS Appl Mater Interfaces 12:15183–15193

    Article  CAS  Google Scholar 

  35. Dias JAC, Assaf JM (2003) Catal Today 85:59–68

    Article  CAS  Google Scholar 

  36. Wang H, Dong X, Zhao T, Yu H, Li M (2019) Appl Catal B 245:302–313

    Article  CAS  Google Scholar 

  37. Wang M, Zhao T, Dong X, Li M, Wang H (2018) Appl Catal B 224:214–221

    Article  CAS  Google Scholar 

  38. Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) J Nat Gas Sci Eng 27:1165–1173

    Article  CAS  Google Scholar 

  39. Dai H, Yu P, Liu H, Xiong S, Xiao X, Deng J, Huang L (2020) New J Chem 44:16101–16109

    Article  CAS  Google Scholar 

  40. Han B, Zhao L, Wang F, Xu L, Yu H, Cui Y, Zhang J, Shi W (2020) Ind Eng Chem Res 59:13370–13379

    Article  CAS  Google Scholar 

  41. Das S, Jangam A, Xi S, Borgna A, Hidajat K, Kawi S (2020) ACS Appl Energy Mater 3:7719–7735

    Article  CAS  Google Scholar 

  42. Chen X, Yin L, Long K, Sun H, Sun M, Wang H, Zhang Q, Ning P (2020) J Energy Inst 93:2255–2263

    Article  CAS  Google Scholar 

  43. Fang X, Zhang X, Guo Y, Chen M, Liu W, Xu X, Peng H, Gao Z, Wang X, Li C (2016) Int J Hydrogen Energy 41:11141–11153

    Article  CAS  Google Scholar 

  44. Li L, Zhang L, Shi X, Zhang Y, Li J (2013) J Porous Mater 21:217–224

    Article  Google Scholar 

  45. Zhang Q, Wang J, Ning P, Zhang T, Wang M, Long K, Huang J (2017) Korean J Chem Eng 34:2823–2831

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO.21766029; 21566031)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Su, P., Ge, Y. et al. A Novel LaAlO3 Perovskite with Large Surface Area Supported Ni-Based Catalyst for Methane Dry Reforming. Catal Lett 152, 2993–3003 (2022). https://doi.org/10.1007/s10562-021-03910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03910-3

Keywords

Navigation