Skip to main content
Log in

The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Alkynes are one of the most important groups of building blocks in organic chemistry as they work as nucleophiles upon deprotonation of its acidic hydrogen. On the surface of a gold catalyst the reactivity of an alkyne towards dehydrogenation depends on the stability of the resulting acetylide species and on its Brønsted acidic behavior with respect to other species in the system. Herein, we study the reaction of alkynes on an oxygen-covered gold surface, hereafter described as O/Au, with and without species able to build acid–base pairs on the surface. As expected, alkynes undergo a facile dehydrogenation process, forming acetylide species and coupling products such as CH3–CC–CC–CH3 from propyne (CH3–CC–H). However, temperature-programmed reactions show that the catalytic intermediates are strongly attached to the surface, leading to parallel decomposition pathways that result in the carbon poisoning of the catalyst. The strong attachment suggests that the alkynes can displace species known to undergo facile dehydrogenation on gold, such as adsorbed alkoxy, as demonstrated by experiments using selected alcohols and alkynes. Moreover, alkynes can even displace alcohols of similar molecular weight (acetylene vs. methanol; phenylacetylene vs. phenol). The results indicate that a gold catalyst facilitates the formation of acetylide species and coupling products, even though their strong interaction with the surface may be counterproductive, as it results in their decomposition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao F, Jia X, Li P et al (2017) Catalytic and catalyst-free diboration of alkynes. Org Chem Front 4:2235–2255

    Article  CAS  Google Scholar 

  2. Heravi MM, Dehghani M, Zadsirjan V et al (2019) Alkynes as privileged synthons in selected organic name reactions. Curr Org Synth 16(2):205–243

    Article  CAS  Google Scholar 

  3. Garba MD, Jackson SD (2017) Catalytic upgrading of refinery cracked products by trans-hydrogenation: a review. Appl Petrochem Res 7(1):1–8. https://doi.org/10.1007/s13203-016-0173-y

    Article  CAS  Google Scholar 

  4. Cordoba M, Coloma-Pascual F, Quiroga ME et al (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58(37):17182–17194. https://doi.org/10.1021/acs.iecr.9b02081

    Article  CAS  Google Scholar 

  5. Desai SP, Ye J, Zheng J et al (2018) Well-defined rhodium-gallium catalytic sites in a metal-organic framework: promoter-controlled selectivity in alkyne semihydrogenation to E-alkenes. J Am Chem Soc 140(45):15309–15318. https://doi.org/10.1021/jacs.8b08550

    Article  CAS  PubMed  Google Scholar 

  6. Xu X, Yang Y, Zhang X et al (2018) Direct synthesis of quinolines via Co(III)-catalyzed and DMSO-involved C-H activation/cyclization of anilines with alkynes. Org Lett 20(3):566–569. https://doi.org/10.1021/acs.orglett.7b03673

    Article  CAS  PubMed  Google Scholar 

  7. Chakrasali P, Kim K, Jung YS et al (2018) Visible-light-mediated photoredox-catalyzed regio- and stereoselective chlorosulfonylation of alkynes. Org Lett 20(23):7509–7513. https://doi.org/10.1021/acs.orglett.8b03273

    Article  CAS  PubMed  Google Scholar 

  8. Loginov DA, Konoplev VE (2018) Oxidative coupling of benzoic acids with alkynes: catalyst design and selectivity. J Organomet Chem 867:14–24

    Article  CAS  Google Scholar 

  9. Semba K, Nakao Y (2019) Cross-coupling reactions by cooperative Pd/Cu or Ni/Cu catalysis based on the catalytic generation of organocopper nucleophiles. Tetrahedron 75:709–719

    Article  CAS  Google Scholar 

  10. Li C-J (2010) The development of catalytic nucleophilic additions of terminal alkynes in water. Acc Chem Res 43(4):581–590. https://doi.org/10.1021/ar9002587

    Article  CAS  PubMed  Google Scholar 

  11. Trost BM, Weiss AH (2009) The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv Synth Catal 351(7–8):963–983

    Article  CAS  Google Scholar 

  12. Cassar L (1975) Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J Organomet Chem 93:253–257

    Article  CAS  Google Scholar 

  13. Dieck HA, Heck FR (1975) Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. J Organomet Chem 93(2):259–263

    Article  CAS  Google Scholar 

  14. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16(50):4467–4470

    Article  Google Scholar 

  15. Altenhoff G, Würtz S, Glorius F (2006) The first palladium-catalyzed Sonogashira coupling of unactivated secondary alkyl bromides. Tetrahedron Lett 47(17):2925–2928

    Article  CAS  Google Scholar 

  16. Yi J, Lu X, Sun Y-Y et al (2013) Nickel-catalyzed Sonogashira reactions of non-activated secondary alkyl bromides and iodides. Angew Chem Int Ed 52(47):12409–12413. https://doi.org/10.1002/anie.201307069

    Article  CAS  Google Scholar 

  17. Porey S, Zhang X, Bhowmick S et al (2020) Alkyne linchpin strategy for drug: pharmacophore conjugation: experimental and computational realization of a meta -selective inverse Sonogashira coupling. J Am Chem Soc 142(8):3762–3774. https://doi.org/10.1021/jacs.9b10646

    Article  CAS  PubMed  Google Scholar 

  18. Dong X-Y, Zhang Y-F, Ma C-L et al (2019) A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling. Nat Chem 11(12):1158–1166

    Article  CAS  Google Scholar 

  19. Gilmore K, Alabugin IV (2011) Cyclizations of alkynes: revisiting Baldwins rules for ring closure. Chem Rev 111:6513–6556. https://doi.org/10.1021/cr200164y

    Article  CAS  PubMed  Google Scholar 

  20. Echavarren AM, Muratore ME, López-Carrillo V et al (2004) Gold-catalyzed cyclizations of alkynes with alkenes and arenes. Organic reactions. Wiley, Hoboken, pp 1–288

    Google Scholar 

  21. Rossy C, Majimel J, Delapierre MT et al (2014) Palladium and copper-supported on charcoal: a heterogeneous multi-task catalyst for sequential Sonogashira-click and click-heck reactions. J Organomet Chem 755:78–85

    Article  CAS  Google Scholar 

  22. Bai X, Wu C, Ge S et al (2020) Pd/Cu-catalyzed enantioselective sequential heck/Sonogashira coupling: asymmetric synthesis of oxindoles containing trifluoromethylated quaternary stereogenic centers. Angew Chem 132(7):2786–2790. https://doi.org/10.1002/ange.201913148

    Article  Google Scholar 

  23. Molnar A (2013) Palladium-catalyzed coupling reactions: practical aspects and future developments. Wiley. p. 692. Available from: https://www.wiley.com/en-us/Palladium+Catalyzed+Coupling+Reactions%3A+Practical+Aspects+and+Future+Developments-p-9783527332540. Accessed Jan 25 2021

  24. Gholinejad M, Bahrami M, Nájera C et al (2018) Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. J Catal 363:81–91

    Article  CAS  Google Scholar 

  25. Glaser C (1869) Beiträge zur Kenntniss des Acetenylbenzols. Berichte der Dtsch Chem Gesellschaft 2(1):422–424. https://doi.org/10.1002/cber.186900201183

    Article  Google Scholar 

  26. Hay AS (1962) Oxidative coupling of acetylenes. II. J Org Chem 27:3320–3321. https://doi.org/10.1021/jo01056a511

    Article  CAS  Google Scholar 

  27. Corma A, Juárez R, Boronat M, Sánchez F et al (2011) Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem Commun 47(5):1446–1448

    Article  CAS  Google Scholar 

  28. Kanuru VK, Kyriakou G, Beaumont SK et al (2010) Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). J Am Chem Soc 132(23):8081–8086

    Article  CAS  Google Scholar 

  29. Guan Y, Hensen EJM (2009) Ethanol dehydrogenation by gold catalysts: the effect of the gold particle size and the presence of oxygen. Appl Catal A: Gen 361(1–2):49–56

    Article  CAS  Google Scholar 

  30. Behravesh E, Melander MM, Wärnå J et al (2021) Oxidative dehydrogenation of ethanol on gold: combination of kinetic experiments and computation approach to unravel the reaction mechanism. J Catal 394:193–205

    Article  CAS  Google Scholar 

  31. Aschwanden L, Mallat T, Krumeich F et al (2009) A simple preparation of an efficient heterogeneous gold catalyst for aerobic amine oxidation. J Mol Catal A: Chem 309(1–2):57–62

    Article  CAS  Google Scholar 

  32. Wang M, Wang F, Ma J et al (2014) Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chem Commun 50(3):292–294

    Article  CAS  Google Scholar 

  33. Yang Y, Liu Y, Lv P et al (2018) Theoretical insight into the mechansim and origin of ligand-controlled regioselectivity in homogenous gold-catalyzed intramolecular hydroarylation of alkynes. J Org Chem 83(5):2763–2772. https://doi.org/10.1021/acs.joc.7b03213

    Article  CAS  PubMed  Google Scholar 

  34. Lonca GH, Tejo C, Chan HL et al (2017) Gold(i)-catalyzed 6-endo-dig azide-yne cyclization: efficient access to 2H–1,3-oxazines. Chem Commun 53(4):736–739

    Article  CAS  Google Scholar 

  35. Minnihan EC, Colletti SL, Toste FD et al (2007) Gold(I)-catalyzed regioselective cyclizations of silyl ketene amides and carbamates with alkynes. J Org Chem 72(16):6287–6289. https://doi.org/10.1021/jo071014r

    Article  CAS  PubMed  Google Scholar 

  36. Alyabyev SB, Beletskaya IP (2018) Gold as a catalyst. Part II. Alkynes in the reactions of carbon–carbon bond formation. Russ Chem Rev 87(10):984–1047. https://doi.org/10.1070/RCR4815

    Article  CAS  Google Scholar 

  37. Schmidbaur H, Schier A (2010) Gold η2-coordination to unsaturated and aromatic hydrocarbons: the key step in gold-catalyzed organic transformations. Organometallics 29:2–23. https://doi.org/10.1021/om900900u

    Article  CAS  Google Scholar 

  38. Rodriguez-Reyes JCF, Siler CGF, Liu W et al (2014) Van der Waals interactions determine selectivity in catalysis by metallic gold. J Am Chem Soc 136(38):13333–13340

    Article  CAS  Google Scholar 

  39. Rodríguez-Reyes JCF, Friend CM, Madix RJ (2012) Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surf Sci 606(15–16):1129–1134

    Article  Google Scholar 

  40. Personick ML, Madix RJ, Friend CM (2017) Selective oxygen-assisted reactions of alcohols and amines catalyzed by metallic gold: paradigms for the design of catalytic processes. ACS Catal 7:965–985. https://doi.org/10.1021/acscatal.6b02693

    Article  CAS  Google Scholar 

  41. Karakalos S, Xu Y, Cheenicode Kabeer F et al (2016) Noncovalent bonding controls selectivity in heterogeneous catalysis: coupling reactions on gold. J Am Chem Soc 138(46):15243–15250. https://doi.org/10.1021/jacs.6b09450

    Article  CAS  PubMed  Google Scholar 

  42. Rodríguez-Reyes JCF, Friend CM, Madix RJ (2018) Selective activation of methyl C–H bonds of toluene by oxygen on metallic gold. Catal Lett 148(7):1985–1989

    Article  Google Scholar 

  43. Williams CG, Wang M, Skomski D et al (2017) Metal-ligand complexation through redox assembly at surfaces characterized by vibrational spectroscopy. J Phys Chem C 121(24):13183–13190. https://doi.org/10.1021/acs.jpcc.7b02809

    Article  CAS  Google Scholar 

  44. Personick ML, Zugic B, Biener MM et al (2015) Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catal 5(7):4237–4241

    Article  CAS  Google Scholar 

  45. Xu B, Madix RJ, Friend CM (2010) Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J Am Chem Soc 132(46):16571–16580. https://doi.org/10.1021/ja106706v

    Article  CAS  PubMed  Google Scholar 

  46. Saliba N, Parker DH, Koel BE (1998) Adsorption of oxygen on Au(111) by exposure to ozone. Surf Sci 410(2–3):270–282

    Article  CAS  Google Scholar 

  47. Cheenicode Kabeer F, Chen W, Madix RJ et al (2017) First-principles study of alkoxides adsorbed on Au(111) and Au(110) surfaces: assessing the roles of noncovalent interactions and molecular structures in catalysis. J Phys Chem C 121(50):27905–27914. https://doi.org/10.1021/acs.jpcc.7b06641

    Article  CAS  Google Scholar 

  48. Xu B, Madix RJ, Friend CM (2013) Alkyl groups as synthetic vehicles in gold-mediated oxidative-coupling reactions. Phys Chem Chem Phys 15:3179–3185. https://doi.org/10.1039/C3CP43956A

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Xu B, Haubrich J et al (2009) Surface-mediated self-coupling of ethanol on gold. J Am Chem Soc 131(16):5757–5759. https://doi.org/10.1021/ja900822r

    Article  CAS  PubMed  Google Scholar 

  50. Mcllroy A, Nesbitt DJ (1989) High-resolution, slit jet infrared spectroscopy of hydrocarbons: quantum state specific mode mixing in CH stretch-excited propyne. J Chem Phys 91(1):104–113. https://doi.org/10.1063/1.457496

    Article  Google Scholar 

  51. Linstrom PJ, Mallard WG. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 [Internet]. Gaithersburg MD, 20899: National Institute of Standards and Technology. Available from: https://webbook.nist.gov/chemistry/. Accessed 24 Feb 2021

  52. Réocreux R, Fampiou I, Stamatakis M (2021) The role of oxygenated species in the catalytic self-coupling of MeOH on O pre-covered Au(111). Faraday Discuss. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/fd/c9fd00134d. Accessed 7 Apr 2021

  53. Xu B, Liu X, Haubrich J et al (2009) Selectivity control in gold-mediated esterification of methanol. Angew Chem Int Ed 48(23):4206–4209. https://doi.org/10.1002/anie.200805404

    Article  CAS  Google Scholar 

  54. Boyd DRJ, Thompson HW (1952) The infra-red spectrum of methyl acetylene. Trans Faraday Soc 48:493–501

    Article  CAS  Google Scholar 

  55. Williams VZ (1945) Infrared and Raman spectra of polyatomic molecules (Herzberg, Gerhard). J Chem Educ 22(11):572. https://doi.org/10.1021/ed022p572.1

    Article  Google Scholar 

  56. Duncan JL (1964) The calculation of force constants and normal coordinates—V constrained force fields for a series of methyl and dimethyl compounds of 3-fold symmetry. Spectrochim Acta 20(7):1197–1221

    Article  CAS  Google Scholar 

  57. Shimanouchi T (1972) Tables of molecular vibrational frequencies, Consolidated Volume 1. National Standard Reference Data Series, National Bureau of Standards, NSRDS-NBS 39, Washington DC.

  58. Falk M, Whalley E (1961) Infrared spectra of methanol and deuterated methanols in gas, liquid, and solid phases. J Chem Phys 34(5):1554–1568. https://doi.org/10.1063/1.1701044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the valuable support of Prof. Cynthia Friend during the stages of experimental design, data analysis and for very fruitful discussions. Ms. Karinna Visurraga (UTEC) is acknowledged for administrative support.

Funding

This work was funded by UTEC Faculty Grant No. 819051 to promote international exploratory collaborative research with Harvard University. EM acknowledges the Ito Foundation for International Education Exchange for financial support. IMASC (Harvard) is acknowledged for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos F. Rodriguez-Reyes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipoco Haro, D.A., Muramoto, E., Madix, R.J. et al. The Reaction of Alkynes with Model Gold Catalysts: Generation of Acetylides, Self-coupling and Surface Decomposition. Catal Lett 152, 3066–3075 (2022). https://doi.org/10.1007/s10562-021-03882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03882-4

Keywords

Navigation