Skip to main content
Log in

Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to further improve the catalytic activity and stability of heterogeneous acid catalysts, a polystyrene microspheres modified sulfonic acid-based catalyst (PS-SO3H) was prepared. PS-SO3H was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption, and X-ray photoelectron spectroscopy. Catalytic efficiency was determined using the reaction of furfuryl alcoholysis to ethyl levulinate (EL). The obtained results showed that PS-SO3H had excellent catalytic performance, with EL yield of 94.7%. In addition, PS-SO3H was easily separated from the reaction system and recycled multiple times without significant reduction in activity. High catalytic activity stemmed from the effect of Brønsted acid sites and appropriate structural properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. He SB, Bijl A, Rohrbach L et al (2021) Catalytic upcycling paper sludge for the recovery of minerals and production of renewable high-grade biofuels and bio-based chemicals. Chem Eng J 420:129714

    Article  CAS  Google Scholar 

  2. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  CAS  PubMed  Google Scholar 

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  4. Chang J, Leung DYC, Wu CZ et al (2003) A review on the energy production, consumption, and prospect of renewable energy in China. Renew Sust Energ Rev 7(5):453–468

    Article  Google Scholar 

  5. Liu CW, Zhang CH, Liu KK et al (2015) Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals. Biomass Bioenergy 72:189–199

    Article  CAS  Google Scholar 

  6. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170

    Article  CAS  Google Scholar 

  7. Piscopo CG (2015) Supported sulfonic acids: solid catalysts for batch and continuous-flow synthetic processes. ChemistryOpen 4(3):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gawande MB, Hosseinpour R, Luque R (2014) Silica sulfuric acid and related solid-supported catalysts as versatile materials for greener organic synthesis. Curr Org Synth 11(4):526–544

    Article  CAS  Google Scholar 

  9. Demolis A, Essayem N, Rataboul F (2014) Synthesis and applications of alkyl levulinates. Acs Sustain Chem Eng 2(6):1338–1352

    Article  CAS  Google Scholar 

  10. Wang MM, Peng LC, Gao XY et al (2020) Efficient one-pot synthesis of alkyl levulinate from xylose with an integrated dehydration/transfer-hydrogenation/alcoholysis process. Sustain Energy Fuels 4(3):1383–1395

    Article  CAS  Google Scholar 

  11. Vaishnavi BJ, Sujith S, Kulal N et al (2021) Utilization of renewable resources: investigation on role of active sites in zeolite catalyst for transformation of furfuryl alcohol into alkyl levulinate. Mol Catal 502:111361

    Article  CAS  Google Scholar 

  12. Chada RR, Koppadi KS, Enumula SS et al (2018) Continuous synthesis of fuel additives alkyl levulinates via alcoholysis of furfuryl alcohol over silica supported metal oxides. Catal Lett 148(6):1731–1738

    Article  CAS  Google Scholar 

  13. Martin NH, Allen NW, Brown JD et al (2003) An NMR shielding model for protons above the plane of a carbonyl group. J Mol Graph 22(2):127–131

    Article  CAS  Google Scholar 

  14. Przypis M, Matuszek K, Chrobok A et al (2020) Inexpensive and tuneable protic ionic liquids based on sulfuric acid for the biphasic synthesis of alkyl levulinates. J Mol Liq 308:113166

    Article  CAS  Google Scholar 

  15. Brzeczek-Szafran A, Wieclawik J, Barteczko N et al (2021) Protic ionic liquids from di- or triamines: even cheaper Bronsted acidic catalysts. Green Chem 23(12):4421–4429

    Article  CAS  Google Scholar 

  16. Freitas FA, Licursi D, Lachter ER et al (2016) Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: opening the way to a new class of bio-degradable surfactants. Catal Commun 73:84–87

    Article  CAS  Google Scholar 

  17. Lange JP, van de Graaf WD, Haan RJ (2009) Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. Chemsuschem 2(5):437–441

    Article  CAS  PubMed  Google Scholar 

  18. Zhou SL, Jiang DB, Liu XX et al (2018) Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate. RSC Adv 8(7):3657–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armatas GS, Bilis G, Louloudi M (2011) Highly ordered mesoporous zirconia-polyoxometalate nanocomposite materials for catalytic oxidation of alkenes. J Mater Chem 21(9):2997–3005

    Article  CAS  Google Scholar 

  20. Kuzminska M, Kovalchuk TV, Backov R et al (2014) Immobilizing heteropolyacids on zirconia-modified silica as catalysts for oleochemistry transesterification and esterification reactions. J Catal 320:1–8

    Article  CAS  Google Scholar 

  21. Srilatha K, Issariyakul T, Lingaiah N et al (2010) Efficient esterification and transesterification of used cooking oil using 12-tungstophosphoric acid (TPA)/Nb2O5 catalyse. Energy Fuels 24(9):4748–4755

    Article  CAS  Google Scholar 

  22. Bringue R, Ramirez E, Iborra M et al (2019) Esterification of furfuryl alcohol to butyl levulinate over ion-exchange resins. Fuel 257:116010

    Article  CAS  Google Scholar 

  23. Lucas N, Gurrala L, Athawale A (2019) Heteropolyacids supported on mesoporous AlSBA-15 as efficient catalysts for esterification of levulinic acid. J Porous Mater 26(5):1335–1343

    Article  Google Scholar 

  24. Manyar HG, Chaure GS, Kumar A (2006) Supported polyperoxometallates: highly selective catalyst for oxidation of alcohols to aldehydes. J Mol Catal A-Chem 243(2):244–252

    Article  CAS  Google Scholar 

  25. Shokrolahi A, Zali A, Pouretedal HR et al (2008) Carbon-based solid acid catalyzed highly efficient oxidations of organic compounds with hydrogen peroxide. Catal Commun 9(5):859–863

    Article  CAS  Google Scholar 

  26. Liu XF, Li H, Zhang H et al (2016) Efficient conversion of furfuryl alcohol to ethyl levulinate with sulfonic acid-functionalized MIL-101(Cr). RSC Adv 6(93):90232–90238

    Article  CAS  Google Scholar 

  27. Song DY, An S, Lu B et al (2015) Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl Catal B-Environ 179:445–457

    Article  CAS  Google Scholar 

  28. Zhao G, Liu M, Xia XK et al (2019) Conversion of furfuryl alcohol into ethyl levulinate over glucose-derived carbon-based solid acid in ethanol. Molecules 24(10):1881

    Article  CAS  PubMed Central  Google Scholar 

  29. Yang JF, Zhang HY, Ao ZF et al (2019) Hydrothermal carbon enriched with sulfonic and carboxyl groups as an efficient solid acid catalyst for butanolysis of furfuryl alcohol. Catal Commun 123:109–113

    Article  CAS  Google Scholar 

  30. Yang JF, Ao ZF, Wu H et al (2020) Waste paper-derived magnetic carbon composite: a novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol. Renew Energy 146:477–483

    Article  CAS  Google Scholar 

  31. Guo HX, Hirosaki Y, Qi XH et al (2020) Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renew Energy 157:951–958

    Article  CAS  Google Scholar 

  32. Yu X, Peng LC, Pu QY et al (2020) Efficient valorization of biomass-derived furfuryl alcohol to butyl levulinate using a facile lignin-based carbonaceous acid. Res Chem Intermed 46(2):1469–1485

    Article  CAS  Google Scholar 

  33. Sinha VR, Goyal V, Bhinge JR et al (2003) Diagnostic microspheres: an overview. Crit Rev Ther Drug Carr Syst 20(6):433–460

    Article  CAS  Google Scholar 

  34. Wang K, Xing JF, Li XY et al (2012) Fabrication of novel magnetic nanoparticles-coated P(styrene-itaconic acid-divinylbenzene) microspheres. Carbohydr Polym 87(4):2712–2717

    Article  CAS  Google Scholar 

  35. Wei W, Wang LY, Yuan L et al (2007) Preparation and application of novel microspheres possessing autofluorescent properties. Adv Funct Mater 17(16):3153–3158

    Article  CAS  Google Scholar 

  36. Chang BB, Fu J, Tian YL et al (2013) Multifunctionalized ordered mesoporous carbon as an efficient and stable solid acid catalyst for biodiesel preparation. J Phys Chem C 117(12):6252–6258

    Article  CAS  Google Scholar 

  37. Xu S, Yu JY, Sun YB et al (2015) Synthesis and characterization of organic intercalated layered double hydroxides and their application in bitumen modification. Mater Chem Phys 152:54–61

    Article  CAS  Google Scholar 

  38. Okamura M, Takagaki A, Toda M et al (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045

    Article  CAS  Google Scholar 

  39. Zhou SH, Dai FL, Xiang ZY et al (2019) Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl Catal B-Environ 248:31–43

    Article  CAS  Google Scholar 

  40. Malins K, Kampars V, Brinks J et al (2015) Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation. Appl Catal B-Environ 176:553–558

    Article  Google Scholar 

  41. Zhao K, Liu SF, Li KX et al (2017) Fabrication of -SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Mol Catal 433:193–201

    Article  CAS  Google Scholar 

  42. Ranke W (1993) UPS and XPS reference data of O, N, NO, (NO2)2, NH3, H2O, OH, H2S, SH and S on GE surfaces. J Electron Spectrosc Relat Phenom 61(2):231–240

    Article  CAS  Google Scholar 

  43. Guo QQ, Yang F, Liu XH et al (2020) Low-cost synthesis of nanoaggregate SAPO-34 and its application in the catalytic alcoholysis of furfuryl alcohol. Chin J Catal 41(11):1772–1781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Major Projects in Inner Mongolia Autonomous Region (2020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijun Wang or Jian Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Wang, H. & Ding, J. Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Lett 152, 3158–3167 (2022). https://doi.org/10.1007/s10562-021-03881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03881-5

Keywords

Navigation