Skip to main content
Log in

Effect of Support Nature on Ruthenium-Catalyzed Allylic Oxidation of Cycloalkenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Allylic oxidation of cycloalkenes is a promising route to generate α,β-unsaturated ketones but encounters difficulties in selectivity control. Here, it is demonstrated that ruthenium nanoparticles (1–2 nm sized) decorated on TiO2 nanomaterials with different morphologies (nanoparticles, nanotubes and nanofibers) are demonstrated highly efficiency and selectivity for the selective aerobic oxidation of cyclohexene and indane. The as-prepared Ru/TiO2 nanofibers (NFs) represents higher activity for the allylic oxidation of cyclohexene (conv. 95%) with 78% selectivity toward 2-cyclohexen-1-one at 75 °C under 4 bar O2. Whereas, Ru/TiO2 nanoparticles (NPs) and Ru/TiO2 nanotubes (NTs) show 92 and 84% conversion, respectively. Upon switching to Al2O3 support, catalytic activity with Ru/Al2O3 is decreased significantly to 27%. Very high activity for indane (conv. 70%) toward 2,3-dihydro-1H-inden-1-one (selectivity 85%) has also been observed by using Ru/TiO2 NFs. Ru/TiO2 nanomaterials possess higher catalytic efficiency as compared to Ru NPs and TiO2 nanomaterials individually, representing a positive synergetic effect. Moreover, these reported results suggest that the higher activities of Ru/TiO2 NPs and Ru/TiO2 NFs are related to the crystalline structure, pore volume and surface area of the supports.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee S-O, Raja R, Harris KDM, Thomas JM, Johnson BFG, Sankar G (2003) Mechanistic insights into the conversion of cyclohexene to adipic acid by H2O2 in the presence of a TAPO-5 catalyst. Angew Chem Int Ed 42:1520–1523

    Article  CAS  Google Scholar 

  2. Shringarpure PA, Patel A (2011) Supported undecaphosphotungstate: an ecofriendly and efficient solid catalyst for nonsolvent liquid-phase aerobic epoxidation of alkenes. Ind Eng Chem Res 50:9069–9076

    Article  CAS  Google Scholar 

  3. Kockrick E, Lescouet T, Kudrik EV, Sorokin AB, Farrusseng D (2011) Synergistic effects of encapsulated phthalocyanine complexes in MIL-101 for the selective aerobic oxidation of tetralin. Chem Commun 47:1562–1564

    Article  CAS  Google Scholar 

  4. Catino AJ, Forslund RE, Doyle MP (2004) Dirhodium(II) caprolactamate: an exceptional catalyst for allylic oxidation. J Am Chem Soc 126:13622–13623

    Article  CAS  PubMed  Google Scholar 

  5. Zalomaeva OV, Kholdeeva OA, Sorokin AB (2006) H2O2-based oxidation of functionalized phenols containing several oxidizable sites to p-quinones using a mesoporous titanium-silicate catalyst. Green Chem 8:883–886

    Article  CAS  Google Scholar 

  6. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 126:10657–10666

    Article  CAS  PubMed  Google Scholar 

  7. Parmeggiani C, Cardona F (2012) Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem 14:547–564

    Article  CAS  Google Scholar 

  8. Li F, Chen J, Zhang Q, Wang Y (2008) Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chem 10:553–562

    Article  CAS  Google Scholar 

  9. Wang Z, Li L, Huang Y (2014) A general synthesis of ynones from aldehydes via oxidative C–C bond cleavage under aerobic conditions. J Am Chem Soc 136:12233–12236

    Article  CAS  PubMed  Google Scholar 

  10. Shi Z, Zhang C, Tang C, Jiao N (2012) Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev 41:3381–3430

    Article  CAS  PubMed  Google Scholar 

  11. Roldán A, Ricart JM, Illas F, Pacchioni G (2010) O2 activation by Au5 clusters stabilized on clean and electron-rich MgO stepped surfaces. J Phys Chem C 114:16973–16978

    Article  Google Scholar 

  12. Jiang P, Zhou J-J, Li R, Gao Y, Sun T-L, Zhao X-W, Xiang Y-J, Xie S-S (2006) PVP-capped twinned gold plates from nanometer to micrometer. J Nanopart Res 8:927–934

    Article  CAS  Google Scholar 

  13. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  PubMed  Google Scholar 

  14. Long R, Mao K, Gong M, Zhou S, Hu J, Zhi M, You Y, Bai S, Jiang J, Zhang Q, Wu X, Xiong Y (2014) Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angew Chem Int Ed 53:3205–3209

    Article  CAS  Google Scholar 

  15. Denekamp IM, Antens M, Slot TK, Rothenberg G (2018) Selective catalytic oxidation of cyclohexene with molecular oxygen: radical versus nonradical pathways. ChemCatChem 10:1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y-Z, Wang ZU, Wang H, Lu J, Yu S-H, Jiang H-L (2017) Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state. J Am Chem Soc 139:2035–2044

    Article  CAS  PubMed  Google Scholar 

  17. Cao Y, Li Y, Yu H, Peng F, Wang H (2015) Aerobic oxidation of [small alpha]-pinene catalyzed by carbon nanotubes. Catal Sci Technol 5:3935–3944

    Article  CAS  Google Scholar 

  18. Rao BG, Sudarsanam P, Rao TV, Amin MH, Bhargava SK, Reddy BM (2020) Highly dispersed MnOx nanoparticles on shape-controlled SiO2 spheres for ecofriendly selective allylic oxidation of cyclohexene. Catal Lett 150:3023–3035

    Article  CAS  Google Scholar 

  19. Rao BG, Sudarsanam P, Nallappareddy PRG, Yugandhar Reddy M, Venkateshwar Rao T, Reddy BM (2018) Selective allylic oxidation of cyclohexene over a novel nanostructured CeO2–Sm2O3/SiO2 catalyst. Res Chem Intermed 44:6151–6168

    Article  CAS  Google Scholar 

  20. Sakthivel A, Dapurkar SE, Selvam P (2003) Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves. Appl Catal A 246:283–293

    Article  CAS  Google Scholar 

  21. Eimer GA, Casuscelli SG, Ghione GE, Crivello ME, Herrero ER (2006) Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts. Appl Catal A 298:232–242

    Article  CAS  Google Scholar 

  22. Mi Y, Yang Z, Liu Z, Yang F, Sun Q, Tao H, Wang W, Wang J (2009) Liquid phase oxidation of cyclohexene over selenite doped MCM-41. Catal Lett 129:499–506

    Article  CAS  Google Scholar 

  23. Sujandi, Han S-C, Han D-S, Jin M-J, Park S-E (2006) Catalytic oxidation of cycloolefins over Co(cyclam)-functionalized SBA-15 material with H2O2. J Catal 243:410–419

    Article  Google Scholar 

  24. Duan M, Wang X, Peng W, Liu D, Cheng Q, Yang Q (2021) Co(II) Schiff base complex supported on nano-silica for the aerobic oxidation of cyclohexene: reaction pathways and overoxidation on the experimental and calculated mechanism. ChemistrySelect 6:2869–2877

    Article  CAS  Google Scholar 

  25. Yin CX, Yang ZH, Li B, Zhang FM, Wang JQ, Ou EC (2009) Allylic oxidation of cyclohexene with molecular oxygen using cobalt resinate as catalyst. Catal Lett 131:440–443

    Article  CAS  Google Scholar 

  26. Mukherjee S, Samanta S, Roy BC, Bhaumik A (2006) Efficient allylic oxidation of cyclohexene catalyzed by immobilized Schiff base complex using peroxides as oxidants. Appl Catal A 301:79–88

    Article  CAS  Google Scholar 

  27. Rogers O, Pattisson S, Macginley J, Engel RV, Whiston K, Taylor SH, Hutchings GJ (2018) The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/graphite and Au/graphene catalysts. Catalysts 8:311

    Article  Google Scholar 

  28. Büker J, Alkan B, Fu Q, Xia W, Schulwitz J, Waffel D, Falk T, Schulz C, Wiggers H, Muhler M, Peng B (2020) Selective cyclohexene oxidation with O2, H2O2 and tert-butyl hydroperoxide over spray-flame synthesized LaCo1−xFexO3 nanoparticles. Catal Sci Technol 10:5196–5206

    Article  Google Scholar 

  29. Sun Y, Ma H, Luo Y, Zhang S, Gao J, Xu J (2018) Activation of molecular oxygen using durable cobalt encapsulated with nitrogen-doped graphitic carbon shells for aerobic oxidation of lignin-derived alcohols. Chem Eur J 24:4653–4661.

    Article  CAS  PubMed  Google Scholar 

  30. Ghiaci M, Dorostkar N, Martínez-Huerta MV, Fierro JLG, Moshiri P (2013) Synthesis and characterization of gold nanoparticles supported on thiol functionalized chitosan for solvent-free oxidation of cyclohexene with molecular oxygen. J Mol Catal A 379:340–349

    Article  CAS  Google Scholar 

  31. Tonigold M, Lu Y, Bredenkötter B, Rieger B, Bahnmüller S, Hitzbleck J, Langstein G, Volkmer D (2009) Heterogeneous catalytic oxidation by MFU-1: a cobalt(II)-containing metal–organic framework. Angew Chem Int Ed 48:7546–7550

    Article  CAS  Google Scholar 

  32. Maksimchuk NV, Kovalenko KA, Fedin VP, Kholdeeva OA (2010) Heterogeneous selective oxidation of alkenes to α,β-unsaturated ketones over coordination polymer MIL-101. Adv Synth Catal 352:2943–2948

    Article  CAS  Google Scholar 

  33. Fu Y, Sun D, Qin M, Huang R, Li Z (2012) Cu(ii)-and Co(ii)-containing metal–organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Adv 2:3309–3314

    Article  CAS  Google Scholar 

  34. Skobelev IY, Kovalenko KA, Fedin VP, Sorokin AB, Kholdeeva OA (2013) Allylic oxdation of alkenes with molecular oxygen catalyzed by porous coordination polymers Fe-MIL-101 and Cr-MIL-101. Kinet Catal 54:607–614

    Article  CAS  Google Scholar 

  35. Ponchai P, Adpakpang K, Bureekaew S (2021) Selective cyclohexene oxidation to allylic compounds over a Cu-triazole framework via homolytic activation of hydrogen peroxide. Dalton Trans 50:7917–7921

    Article  CAS  PubMed  Google Scholar 

  36. Yoon T-U, Ahn S, Kim A-R, Notestein JM, Farha OK, Bae Y-S (2020) Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metal–organic framework. Catal Sci Technol 10:4580–4585

    Article  CAS  Google Scholar 

  37. Liu X, Zeng J, Wang J, Shi W, Zhu T (2016) Catalytic oxidation of methyl bromide using ruthenium-based catalysts. Catal Sci Technol 6:4337–4344

    Article  CAS  Google Scholar 

  38. Qadir MI, Weilhard A, Fernandes JA, de Pedro I, Vieira BJC, Waerenborgh JC, Dupont J (2018) Selective carbon dioxide hydrogenation driven by ferromagnetic RuFe nanoparticles in ionic liquids. ACS Catal 8:1621–1627

    Article  CAS  Google Scholar 

  39. Qadir MI, Bernardi F, Scholten JD, Baptista DL, Dupont J (2019) Synergistic CO2 hydrogenation over bimetallic Ru/Ni nanoparticles in ionic liquids. Appl Catal B 252:10–17

    Article  CAS  Google Scholar 

  40. Weilhard A, Abarca G, Viscardi J, Prechtl MHG, Scholten JD, Bernardi F, Baptista DL, Dupont J (2017) Challenging thermodynamics: hydrogenation of benzene to 1,3-cyclohexadiene by Ru@Pt nanoparticles. ChemCatChem 9:204–211

    Article  CAS  Google Scholar 

  41. Hurisso BB, Lovelock KRJ, Licence P (2011) Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies. Phys Chem Chem Phys 13:17737–17748

    Article  CAS  PubMed  Google Scholar 

  42. Kolbeck C, Cremer T, Lovelock KRJ, Paape N, Schulz PS, Wasserscheid P, Maier F, Steinrück HP (2009) Influence of different anions on the surface composition of ionic liquids studied using ARXPS. J Phys Chem B 113:8682–8688

    Article  CAS  PubMed  Google Scholar 

  43. Mozia S, Heciak A, Morawski AW (2011) The influence of physico-chemical properties of TiO2 on photocatalytic generation of C-1-C-3 hydrocarbons and hydrogen from aqueous solution of acetic acid. Appl Catal B 104:21–29

    Article  CAS  Google Scholar 

  44. Kondratenko EV, Amrute AP, Pohl M-M, Steinfeldt N, Mondelli C, Pérez-Ramírez J (2013) Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation. Catal Sci Technol 3:2555–2558

    Article  CAS  Google Scholar 

  45. Hitrik M, Sasson Y (2018) Aggregation of catalytically active Ru nanoparticles to inactive bulk, monitored in situ during an allylic isomerization reaction. Influence of solvent, surfactant and stirring. RSC Adv 8:1481–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou G, Dou R, Bi H, Xie S, Pei Y, Fan K, Qiao M, Sun B, Zong B (2015) Ru nanoparticles on rutile/anatase junction of P25 TiO2: controlled deposition and synergy in partial hydrogenation of benzene to cyclohexene. J Catal 332:119–126

    Article  CAS  Google Scholar 

  47. Shin JH, Kim GJ, Hong SC (2020) Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen. Appl Surf Sci 506:144906

    Article  CAS  Google Scholar 

  48. Elmasides C, Kondarides DI, Neophytides SG, Verykios XE (2001) Partial oxidation of methane to synthesis gas over Ru/TiO2 catalysts: effects of modification of the support on oxidation state and catalytic performance. J Catal 198:195–207

    Article  CAS  Google Scholar 

  49. Umpierre AP, de Jesús E, Dupont J (2011) Turnover numbers and soluble metal nanoparticles. ChemCatChem 3:1413–1418

    Article  CAS  Google Scholar 

  50. Qadir MI, Scholten JD, Dupont J (2014) TiO2 nanomaterials: highly active catalysts for the oxidation of hydrocarbons. J Mol Catal A 383–384:225–230

    Article  Google Scholar 

  51. Luque R, Badamali SK, Clark JH, Fleming M, Macquarrie DJ (2008) Controlling selectivity in catalysis: selective greener oxidation of cyclohexene under microwave conditions. Appl Catal A 341:154–159

    Article  CAS  Google Scholar 

  52. Tong J, Zhang Y, Li Z, Xia C (2006) Highly effective catalysts of natural polymer supported Salophen Mn(III) complexes for aerobic oxidation of cyclohexene. J Mol Catal A 249:47–52

    Article  CAS  Google Scholar 

  53. Li Y, Zhou X-T, Ji H-B (2012) Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin. Catal Commun 27:169–173

    Article  CAS  Google Scholar 

  54. Kirillova MV, Kirillov AM, Reis PM, Silva JAL, da Silva J, Pombeiro AJL (2007) Group 5–7 transition metal oxides as efficient catalysts for oxidative functionalization of alkanes under mild conditions. J Catal 248:130–136

    Article  CAS  Google Scholar 

  55. Nunes GS, Alexiou ADP, Toma HE (2008) Catalytic oxidation of hydrocarbons by trinuclear mu-oxo-bridged ruthenium-acetate clusters: radical versus non-radical mechanisms. J Catal 260:188–192

    Article  CAS  Google Scholar 

  56. Lin M, Dai L-X, Gu J, Kang L-Q, Wang Y-H, Si R, Zhao Z-Q, Liu W-C, Fu X, Sun L-D, Zhang Y-W, Yan C-H (2017) Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer. RSC Adv 7:33078–33085

    Article  CAS  Google Scholar 

  57. Denekamp IM, Antens M, Slot TK, Rothenberg G (2018) Selective catalytic oxidation of cyclohexene with molecular oxygen: radical versus nonradical pathways. ChemCatChem 10:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sebastian J, Jinka KM, Jasra RV (2006) Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobalt(II)-exchanged zeolite X. J Catal 244:208–218

    Article  CAS  Google Scholar 

  59. Mukherjee S, Samanta S, Bhaumik A, Ray BC (2006) Mechanistic study of cyclohexene oxidation and its use in modification of industrial waste organics. App Catal B 68:12–20

    Article  CAS  Google Scholar 

  60. Mahajani SM, Sharma MM, Sridhar T (1999) Uncatalysed oxidation of cyclohexene. Chem Eng Sci 54:3967–3976

    Article  CAS  Google Scholar 

  61. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Heterogeneous catalysts for liquid-phase oxidations: Philosophers’ Stones or Trojan Horses? Acc Chem Res 31:485–493

    Article  CAS  Google Scholar 

  62. Komiya N, Naota T, Oda Y, Murahashi SI (1997) Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. J Mol Catal A 117:21–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to TWAS, FAPERGS (88887.195052/2018-00), CNPq (406260/2018-4), CAPES (158804/2017-01) for their financial support. The authors acknowledge the use of the infrastructure of the Center for Microscopy and Microanalysis (CMM-UFRGS) and the NULAM/DIMAT at National Institute of Metrology, Quality and Technology (INMETRO). We are also thankful to Prof. Cláudio Radtke from IQ-UFRGS for performing XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad I. Qadir or Jairton Dupont.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2055 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadir, M.I., Baptista, D.L. & Dupont, J. Effect of Support Nature on Ruthenium-Catalyzed Allylic Oxidation of Cycloalkenes. Catal Lett 152, 3058–3065 (2022). https://doi.org/10.1007/s10562-021-03880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03880-6

Keywords

Navigation