Skip to main content

Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane

Abstract

Alumina oxide supported nickel (Ni/Al2O3) catalysts generally suffer from fast deactivation caused by coking and formation of nickel aluminate (NiAl2O4) in dry reforming of methane (DRM). Herein, for the first time, a self-stabilization mechanism of the Ni/Al2O3 catalyst (with 0.1 wt% Ni loading) was revealed and effectively applied for DRM. Namely, the conversion of catalytically active Ni species into catalytically inert NiAl2O4 spinel in DRM over the Ni/γ-Al2O3 catalyst could be mitigated by repeated reduction-reaction treatments owing to the increasing amount of Ni located on the NiAl2O4 isolation layer rather than the reactive γ-Al2O3. The self-stabilization could be achieved over Ni/α-Al2O3 as well, even with a faster rate, since the NiAl2O4 isolation layer can be directly formed in the first reduction-reaction cycle due to its small surface area and weak metal-support interaction. These observations not only highlight the importance of an isolation layer for protecting the catalyst from deactivation, but also provide a novel and efficient self-stabilization approach for catalytic DRM.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

References

  1. Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L et al (2020) Nat Energy 5:61–70

    Article  CAS  Google Scholar 

  2. Cai X, Hu YH (2019) Energy Sci Eng 7:4–29

    Article  CAS  Google Scholar 

  3. Hu YH, Ruckenstein E (2004) Adv Catal 48:297–345

    CAS  Google Scholar 

  4. Akri M, Zhao S, Li X, Zang K, Lee AF, Isaacs MA, Xi W, Gangarajula Y, Luo J, Ren Y et al (2019) Nat Commun 10:5181

    Article  Google Scholar 

  5. Foppa L, Margossian T, Kim SM, Müller C, Copéret C, Larmier K, Comas-Vives A (2017) J Am Chem Soc 139:17128–17139

    Article  CAS  Google Scholar 

  6. Hu YH, Ruckenstein E (2020) Science 368:eabb5459

  7. Li M, Sun Z, Hu YH (2021) J Mater Chem A 9:12495–12520

    Article  CAS  Google Scholar 

  8. Li M, Sun Z, Hu YH (2022) Chem Eng J 428:131222

  9. Habibi N, Wang Y, Arandiyan H, Rezaei M (2017) Int J Hydrogen Energy 42:24159–24168

    Article  CAS  Google Scholar 

  10. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2007) Mater Lett 61:2628–2631

    Article  CAS  Google Scholar 

  11. Rezaei M, Alavi SM, Sahebdelfar S, Xinmei L, Qian L, Yan Z-F (2007) Energy Fuels 21:581–589

    Article  CAS  Google Scholar 

  12. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2008) Energy Fuels 22:2195–2202

    Article  CAS  Google Scholar 

  13. Li Z, Lin Q, Li M, Cao J, Liu F, Pan H, Wang Z, Kawi S (2020) Renew Sustain Energy Rev 134:110312

    Article  CAS  Google Scholar 

  14. Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S (2020) Chem Soc Rev 49:2937–3004

    Article  CAS  Google Scholar 

  15. Pakhare D, Spivey J (2014) Chem Soc Rev 43:7813–7837

    Article  CAS  Google Scholar 

  16. Karam L, Armandi M, Casale S, Khoury V, Bonelli B, Massiani P, Hassan N (2020) Energy Convers Manag 225:113470

    Article  CAS  Google Scholar 

  17. Shen D, Huo M, Li L, Lyu S, Wang J, Wang X, Zhang Y, Li J (2020) Catal Sci Technol 10:510–516

    Article  CAS  Google Scholar 

  18. Song ZW, Wang QQ, Guo C, Li S, Yan WJ, Jiao WY, Qiu L, Yan XL, Li RF (2020) Ind Eng Chem Res 59:17250–17258

    Article  CAS  Google Scholar 

  19. Vroulias D, Gkoulemani N, Papadopoulou C, Matralis H (2020) Catal Today 355:704–715

    Article  CAS  Google Scholar 

  20. Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo DVN (2020) Catal Sci Technol 10:35–45

    Article  CAS  Google Scholar 

  21. Jin B, Li S, Liang X (2021) Fuel 284:119082

    Article  CAS  Google Scholar 

  22. Cao P, Zhao H, Adegbite S, Yang B, Lester E, Wu T (2021) Fuel 298:120599

    Article  CAS  Google Scholar 

  23. Al-Mubaddel FS, Kumar R, Sofiu ML, Frusteri F, Ibrahim AA, Srivastava VK, Kasim SO, Fakeeha AH, Abasaeed AE, Osman AI et al (2021) Int J Hydrogen Energy 46:14225–14235

    Article  CAS  Google Scholar 

  24. Huang Q, Fang X, Cheng Q, Li Q, Xu X, Xu L, Liu W, Gao Z, Zhou W, Wang X (2017) ChemCatChem 9:3563–3571

    Article  CAS  Google Scholar 

  25. Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z et al (2019) ACS Catal 9:9072–9080

    Article  CAS  Google Scholar 

  26. Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4:1526–1536

    Article  CAS  Google Scholar 

  27. Bian Z, Kawi S (2018) ChemCatChem 10:320–328

    Article  CAS  Google Scholar 

  28. Seo JC, Kim H, Lee YL, Nam S, Roh HS, Lee K, Park SB (2021) ACS Sustain Chem Eng 9:894–904

    Article  CAS  Google Scholar 

  29. He L, Ren Y, Yue B, Tsang SCE, He H (2021) Processes 9:706

    Article  Google Scholar 

  30. Cui G, Wang J, Fan H, Sun X, Jiang Y, Wang S, Liu D, Gui J (2011) Fuel Process Technol 92:2320–2327

    Article  CAS  Google Scholar 

  31. Fujiwara K, Okuyama K, Pratsinis SE (2017) Environ Sci Nano 4:2076–2092

    Article  CAS  Google Scholar 

  32. Horlyck J, Sara M, Lovell EC, Amal R, Scott J (2019) ChemCatChem 11:3432–3440

    Article  CAS  Google Scholar 

  33. Bradford MCJ, Vannice MA (1999) Catal Today 50:87–96

    Article  CAS  Google Scholar 

  34. Ewbank JL, Kovarik L, Diallo FZ, Sievers C (2015) Appl Catal A 494:57–67

    Article  CAS  Google Scholar 

  35. Littlewood P, Liu S, Weitz E, Marks TJ, Stair PC (2020) Catal Today 343:18–25

    Article  CAS  Google Scholar 

  36. Margossian T, Larmier K, Kim SM, Krumeich F, Fedorov A, Chen P, Müller CR, Copéret C (2017) J Am Chem Soc 139:6919–6927

    Article  CAS  Google Scholar 

  37. Li K, Pei C, Li X, Chen S, Zhang X, Liu R, Gong J (2020) Appl Catal B 264:118448

    Article  CAS  Google Scholar 

  38. Chou TC, Nieh TG (1991) J Am Cerm Soc 74:2270–2279

    Article  CAS  Google Scholar 

  39. Chein RY, Fung WY (2019) Int J Hydrogen Energy 44:14303–14315

    Article  CAS  Google Scholar 

  40. Rozita Y, Brydson R, Scott AJ (2010) J Phys 241:012096

    Google Scholar 

  41. Ma Z, Wang J, Liu G, Zhang H, Lu Y, Xiong J, Xie C, Zou C (2021) Fuel Process Technol 220:106902

    Article  CAS  Google Scholar 

  42. Zhou L, Li L, Wei N, Li J, Basset JM (2015) ChemCatChem 7:2508–2516

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by NSF (Grant Number CMMI-1661699) and American Chemical Society Petroleum Research Fund (Grant Number PRF-60329-ND10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hang Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fang, S. & Hu, Y.H. Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane. Catal Lett 152, 2852–2859 (2022). https://doi.org/10.1007/s10562-021-03867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03867-3

Keywords

  • Dry reforming of methane
  • Ni/Al2O3
  • NiAl2O4
  • Catalyst stabilization