Abstract
Alumina oxide supported nickel (Ni/Al2O3) catalysts generally suffer from fast deactivation caused by coking and formation of nickel aluminate (NiAl2O4) in dry reforming of methane (DRM). Herein, for the first time, a self-stabilization mechanism of the Ni/Al2O3 catalyst (with 0.1 wt% Ni loading) was revealed and effectively applied for DRM. Namely, the conversion of catalytically active Ni species into catalytically inert NiAl2O4 spinel in DRM over the Ni/γ-Al2O3 catalyst could be mitigated by repeated reduction-reaction treatments owing to the increasing amount of Ni located on the NiAl2O4 isolation layer rather than the reactive γ-Al2O3. The self-stabilization could be achieved over Ni/α-Al2O3 as well, even with a faster rate, since the NiAl2O4 isolation layer can be directly formed in the first reduction-reaction cycle due to its small surface area and weak metal-support interaction. These observations not only highlight the importance of an isolation layer for protecting the catalyst from deactivation, but also provide a novel and efficient self-stabilization approach for catalytic DRM.
Graphical Abstract

This is a preview of subscription content, access via your institution.





References
Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L et al (2020) Nat Energy 5:61–70
Cai X, Hu YH (2019) Energy Sci Eng 7:4–29
Hu YH, Ruckenstein E (2004) Adv Catal 48:297–345
Akri M, Zhao S, Li X, Zang K, Lee AF, Isaacs MA, Xi W, Gangarajula Y, Luo J, Ren Y et al (2019) Nat Commun 10:5181
Foppa L, Margossian T, Kim SM, Müller C, Copéret C, Larmier K, Comas-Vives A (2017) J Am Chem Soc 139:17128–17139
Hu YH, Ruckenstein E (2020) Science 368:eabb5459
Li M, Sun Z, Hu YH (2021) J Mater Chem A 9:12495–12520
Li M, Sun Z, Hu YH (2022) Chem Eng J 428:131222
Habibi N, Wang Y, Arandiyan H, Rezaei M (2017) Int J Hydrogen Energy 42:24159–24168
Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2007) Mater Lett 61:2628–2631
Rezaei M, Alavi SM, Sahebdelfar S, Xinmei L, Qian L, Yan Z-F (2007) Energy Fuels 21:581–589
Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2008) Energy Fuels 22:2195–2202
Li Z, Lin Q, Li M, Cao J, Liu F, Pan H, Wang Z, Kawi S (2020) Renew Sustain Energy Rev 134:110312
Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S (2020) Chem Soc Rev 49:2937–3004
Pakhare D, Spivey J (2014) Chem Soc Rev 43:7813–7837
Karam L, Armandi M, Casale S, Khoury V, Bonelli B, Massiani P, Hassan N (2020) Energy Convers Manag 225:113470
Shen D, Huo M, Li L, Lyu S, Wang J, Wang X, Zhang Y, Li J (2020) Catal Sci Technol 10:510–516
Song ZW, Wang QQ, Guo C, Li S, Yan WJ, Jiao WY, Qiu L, Yan XL, Li RF (2020) Ind Eng Chem Res 59:17250–17258
Vroulias D, Gkoulemani N, Papadopoulou C, Matralis H (2020) Catal Today 355:704–715
Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo DVN (2020) Catal Sci Technol 10:35–45
Jin B, Li S, Liang X (2021) Fuel 284:119082
Cao P, Zhao H, Adegbite S, Yang B, Lester E, Wu T (2021) Fuel 298:120599
Al-Mubaddel FS, Kumar R, Sofiu ML, Frusteri F, Ibrahim AA, Srivastava VK, Kasim SO, Fakeeha AH, Abasaeed AE, Osman AI et al (2021) Int J Hydrogen Energy 46:14225–14235
Huang Q, Fang X, Cheng Q, Li Q, Xu X, Xu L, Liu W, Gao Z, Zhou W, Wang X (2017) ChemCatChem 9:3563–3571
Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z et al (2019) ACS Catal 9:9072–9080
Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4:1526–1536
Bian Z, Kawi S (2018) ChemCatChem 10:320–328
Seo JC, Kim H, Lee YL, Nam S, Roh HS, Lee K, Park SB (2021) ACS Sustain Chem Eng 9:894–904
He L, Ren Y, Yue B, Tsang SCE, He H (2021) Processes 9:706
Cui G, Wang J, Fan H, Sun X, Jiang Y, Wang S, Liu D, Gui J (2011) Fuel Process Technol 92:2320–2327
Fujiwara K, Okuyama K, Pratsinis SE (2017) Environ Sci Nano 4:2076–2092
Horlyck J, Sara M, Lovell EC, Amal R, Scott J (2019) ChemCatChem 11:3432–3440
Bradford MCJ, Vannice MA (1999) Catal Today 50:87–96
Ewbank JL, Kovarik L, Diallo FZ, Sievers C (2015) Appl Catal A 494:57–67
Littlewood P, Liu S, Weitz E, Marks TJ, Stair PC (2020) Catal Today 343:18–25
Margossian T, Larmier K, Kim SM, Krumeich F, Fedorov A, Chen P, Müller CR, Copéret C (2017) J Am Chem Soc 139:6919–6927
Li K, Pei C, Li X, Chen S, Zhang X, Liu R, Gong J (2020) Appl Catal B 264:118448
Chou TC, Nieh TG (1991) J Am Cerm Soc 74:2270–2279
Chein RY, Fung WY (2019) Int J Hydrogen Energy 44:14303–14315
Rozita Y, Brydson R, Scott AJ (2010) J Phys 241:012096
Ma Z, Wang J, Liu G, Zhang H, Lu Y, Xiong J, Xie C, Zou C (2021) Fuel Process Technol 220:106902
Zhou L, Li L, Wei N, Li J, Basset JM (2015) ChemCatChem 7:2508–2516
Funding
Funding was provided by NSF (Grant Number CMMI-1661699) and American Chemical Society Petroleum Research Fund (Grant Number PRF-60329-ND10).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, M., Fang, S. & Hu, Y.H. Self-stabilization of Ni/Al2O3 Catalyst with a NiAl2O4 Isolation Layer in Dry Reforming of Methane. Catal Lett 152, 2852–2859 (2022). https://doi.org/10.1007/s10562-021-03867-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10562-021-03867-3
Keywords
- Dry reforming of methane
- Ni/Al2O3
- NiAl2O4
- Catalyst stabilization