Skip to main content
Log in

BaTi4O9 Photocatalysts with Variously Loaded Ag Cocatalyst for Highly Selective Photocatalytic CO2 Reduction with Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of CO2 with water to valuable chemicals has been getting attention as an artificial photosynthetic system using CO2 as a resource. A barium tetratitanate, BaTi4O9, loaded with Ag nanoparticles (Ag/BaTi4O9) successfully promoted the photocatalytic CO2 reduction to yield CO with very high selectivity (> 99%) in an aqueous solution.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408. https://doi.org/10.1002/anie.201207199

    Article  CAS  Google Scholar 

  2. Lingampalli SR, Ayyub MM, Rao CNR (2017) Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2:2740–2748. https://doi.org/10.1021/acsomega.7b00721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868. https://doi.org/10.1021/ja207586e

    Article  CAS  PubMed  Google Scholar 

  4. Takayama T, Iwase A, Kudo A (2015) Photocatalytic water splitting and CO2 reduction over KCaSrTa5O15 nanorod prepared by a polymerized complex method. Bull Chem Soc Jpn 88:538–543. https://doi.org/10.1246/bcsj.20140350

    Article  CAS  Google Scholar 

  5. Nakanishi H, Iizuka K, Takayama T, Iwase A, Kudo A (2017) Highly active NaTaO3-based photocatalysts for CO2 reduction to form CO using water as the electron donor. ChemSusChem 10:112–118. https://doi.org/10.1002/cssc.201601360

    Article  CAS  PubMed  Google Scholar 

  6. Takayama T, Nakanishi H, Matsui M, Iwase A, Kudo A (2018) Photocatalytic CO2 reduction using water as an electron donor over Ag-loaded metal oxide photocatalysts consisting of several polyhedra of Ti4+, Zr4+, and Ta5+. J Photochem Photobiol A Chem 358:416–421. https://doi.org/10.1016/j.jphotochem.2017.10.002

    Article  CAS  Google Scholar 

  7. Wang Z, Teramura K, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl Catal B 163:241–247. https://doi.org/10.1016/j.apcatb.2014.07.052

    Article  CAS  Google Scholar 

  8. Wang Z, Teramura K, Hosokawa S, Tanaka T (2015) Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. J Mater Chem A 3:11313–11319. https://doi.org/10.1039/c5ta01697e

    Article  CAS  Google Scholar 

  9. Teramura K, Wang Z, Hosokawa S, Sakata Y, Tanaka T (2014) A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry 20:9906–9909. https://doi.org/10.1002/chem.201402242

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Teramura K, Huang Z, Hosokawa S, Sakata Y, Tanaka T (2016) Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catal Sci Technol 6:1025–1032. https://doi.org/10.1039/c5cy01280e

    Article  CAS  Google Scholar 

  11. Teramura K, Tatsumi H, Wang Z, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 by H2O over Ag-loaded SrO-modified Ta2O5. Bull Chem Soc Jpn 88:431–437. https://doi.org/10.1246/bcsj.20140385

    Article  CAS  Google Scholar 

  12. Iguchi S, Teramura K, Hosokawa S, Tanaka T (2016) A ZnTa2O6 photocatalyst synthesized via solid state reaction for conversion of CO2 into CO in water. Catal Sci Technol 6:4978–4985. https://doi.org/10.1039/c6cy00271d

    Article  CAS  Google Scholar 

  13. Huang Z, Teramura K, Hosokawa S, Tanaka T (2016) Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. Appl Catal B 199:272–281. https://doi.org/10.1016/j.apcatb.2016.06.039

    Article  CAS  Google Scholar 

  14. Pang R, Teramura K, Asakura H, Hosokawa S, Tanaka T (2017) Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Appl Catal B 218:770–778. https://doi.org/10.1016/j.apcatb.2017.06.052

    Article  CAS  Google Scholar 

  15. Iguchi S, Hasegawa Y, Teramura K, Kidera S, Kikkawa S, Hosokawa S, Asakura H, Tanaka T (2017) Drastic improvement in the photocatalytic activity of Ga2O3 modified with Mg–Al layered double hydroxide for the conversion of CO2 in water. Sustain Energy Fuels 1:1740–1747. https://doi.org/10.1039/C7SE00204A

    Article  CAS  Google Scholar 

  16. Huang Z, Teramura K, Asakura H, Hosokawa S, Tanaka T (2017) CO2 capture, storage, and conversion using a praseodymium-modified Ga2O3 photocatalyst. J Mater Chem A 5:19351–19357. https://doi.org/10.1039/c7ta04918h

    Article  CAS  Google Scholar 

  17. Huang Z, Teramura K, Asakura H, Hosokawa S, Tanaka T (2018) Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. Catal Today 300:173–182. https://doi.org/10.1016/j.cattod.2017.03.043

    Article  CAS  Google Scholar 

  18. Tatsumi H, Teramura K, Huang Z, Wang Z, Asakura H, Hosokawa S, Tanaka T (2017) Enhancement of CO evolution by modification of Ga2O3 with rare-earth elements for the photocatalytic conversion of CO2 by H2O. Langmuir 33:13929–13935. https://doi.org/10.1021/acs.langmuir.7b03191

    Article  CAS  PubMed  Google Scholar 

  19. Rui P, Teramura K, Tatsumi H, Asakura H, Hosokawa S, Tanaka T (2018) Modification of Ga2O3 by an Ag–Cr core–shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O. Chem Commun 54:1053–1056. https://doi.org/10.1039/c7cc07800e

    Article  CAS  Google Scholar 

  20. Wang S, Teramura K, Hisatomi T, Domen K, Asakura H, Hosokawa S, Tanaka T (2020) Optimized synthesis of Ag-modified Al-doped SrTiO3 photocatalyst for the conversion of CO2 using H2O as an electron donor. ChemistrySelect 5:8779–8786. https://doi.org/10.1002/slct.202001693

    Article  CAS  Google Scholar 

  21. Wang S, Teramura K, Hisatomi T, Domen K, Asakura H, Hosokawa S, Tanaka T (2020) Effective driving of Ag-loaded and Al-doped SrTiO3 under irradiation at λ > 300 nm for the photocatalytic conversion of CO2 by H2O. ACS Appl Energy Mater 3:1468–1475. https://doi.org/10.1021/acsaem.9b01927

    Article  CAS  Google Scholar 

  22. Yoshida H, Zhang L, Sato M, Morikawa T, Kajino T, Sekito T, Matsumoto S, Hirata H (2015) Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catal Today 251:132–139. https://doi.org/10.1016/j.cattod.2014.10.039

    Article  CAS  Google Scholar 

  23. Anzai A, Fukuo N, Yamamoto A, Yoshida H (2017) Highly selective photocatalytic reduction of carbon dioxide with water over silver-loaded calcium titanate. Catal Commun 100:134–138. https://doi.org/10.1016/j.catcom.2017.06.046

    Article  CAS  Google Scholar 

  24. Yoshida H, Sato M, Fukuo N, Zhang L, Yoshida T, Yamamoto Y, Morikawa T, Kajino T, Sakano M, Sekito T, Matsumoto S, Hirata H (2018) Sodium hexatitanate photocatalysts prepared by a flux method for reduction of carbon dioxide with water. Catal Today 303:296–304. https://doi.org/10.1016/j.cattod.2017.09.029

    Article  CAS  Google Scholar 

  25. Zhu X, Anzai A, Yamamoto A, Yoshida H (2019) Silver-loaded sodium titanate photocatalysts for selective reduction of carbon dioxide to carbon monoxide with water. Appl Catal B 243:47–56. https://doi.org/10.1016/j.apcatb.2018.10.021

    Article  CAS  Google Scholar 

  26. Zhu X, Yamamoto A, Imai S, Tanaka A, Kominami H, Yoshida H (2019) A silver-manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water. Chem Commun 55:13514–13517. https://doi.org/10.1039/c9cc06038c

    Article  CAS  Google Scholar 

  27. Zhu X, Yamamoto A, Imai S, Tanaka A, Kominami H, Yoshida H (2020) Facet-selective deposition of a silver–manganese dual cocatalyst on potassium hexatitanate photocatalyst for highly selective reduction of carbon dioxide by water. Appl Catal B 274:119085. https://doi.org/10.1016/j.apcatb.2020.119085

    Article  CAS  Google Scholar 

  28. Yamashita Y, Yoshida K, Kakihana M, Uchida S, Sato T (1999) Polymerizable complex synthesis of RuO2/BaTi4O9 photocatalysts at reduced temperatures: factors affecting the photocatalytic activity for decomposition of water. Chem Mater 11:61–66. https://doi.org/10.1021/cm9804012

    Article  CAS  Google Scholar 

  29. Inoue Y, Asai Y, Sato K (1994) Photocatalysts with tunnel structures for decomposition of water. Part 1.—BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters. J Chem Soc Faraday Trans 90:797–802

    Article  CAS  Google Scholar 

  30. Kohno M, Kaneko T, Ogura S, Sato K, Inoue Y (1998) Dispersion of ruthenium oxide on barium titanates (Ba6Ti17O40, Ba4Ti13O30, BaTi4O9 and Ba2Ti9O20) and photocatalytic activity for water decomposition. J Chem Soc Faraday Trans 94:89–94. https://doi.org/10.1039/a704947a

    Article  Google Scholar 

  31. Kohno M, Ogura S, Inoue Y (1996) Preparation of BaTi4O9 by a sol-gel method and its photocatalytic activity for water decomposition. J Mater Chem 6:1921–1924. https://doi.org/10.1039/JM9960601921

    Article  CAS  Google Scholar 

  32. Ogura S, Sato K, Inoue Y (2000) Effects of RuO2 dispersion on photocatalytic activity for water decomposition of BaTi4O9 with a pentagonal prism tunnel and K2Ti4O9 with a zigzag layer structure. Phys Chem Chem Phys 2:2449–2454. https://doi.org/10.1039/b000187m

    Article  CAS  Google Scholar 

  33. Arima M, Kakihana M, Sato T, Yoshida K, Yamashita Y, Yashima M, Yoshimura M (1996) Highly active BaTi4O9/RuO2 photocatalyst by polymerized complex method. Appl Phys Lett 69:2053–2055. https://doi.org/10.1063/1.116877

    Article  Google Scholar 

  34. Hiramachi Y, Fujimori H, Yamakata A, Sakata Y (2019) Achievement of high photocatalytic performance to BaTi4O9 toward overall H2O splitting. ChemCatChem 11:6213–6217. https://doi.org/10.1002/cctc.201901564

    Article  CAS  Google Scholar 

  35. Zhang X, Tang S, Li R, Du Y (2013) Synthesis and photocatalytic property of BaTi4O9/RuO2 nanocomposites. Mater Res Bull 48:609–612. https://doi.org/10.1016/j.materresbull.2012.11.039

    Article  CAS  Google Scholar 

  36. Kohno M, Ogura S, Sato K, Inoue Y (1996) Effect of tunnel structures of BaTi4O9 and Na2Ti6O13 on photocatalytic activity and photoexcited charge separation. Stud Surf Sci Catal 101:143–152. https://doi.org/10.1016/S0167-2991(96)80224-2

    Article  CAS  Google Scholar 

  37. Sato J, Kobayashi H, Inoue Y (2003) Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. II. Roles of geometric and electronic structures. J Phys Chem B 107:7970–7975. https://doi.org/10.1021/jp030021q

    Article  CAS  Google Scholar 

  38. Lou Z, Wang P, Huang B, Dai Y, Qin X, Zhang X, Wang Z, Liu Y (2017) Enhancing charge separation in photocatalysts with internal polar electric fields. ChemPhotoChem 1:136–147. https://doi.org/10.1002/cptc.201600057

    Article  CAS  Google Scholar 

  39. Guo Y, Shi W, Zhu Y (2019) Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat 1:e12007. https://doi.org/10.1002/eom2.12007

    Article  Google Scholar 

  40. Hu Y, Pan Y, Wang Z, Lin T, Gao Y, Luo B, Hu H, Fan F, Liu G, Wang L (2020) Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-15993-4

    Article  CAS  Google Scholar 

  41. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  42. Nomura M, Koike Y, Sato M, Koyama A, Inada Y, Asakura K (2007) A new XAFS beamline NW10A at the photon factory. AIP Conf Proc 882:896–898. https://doi.org/10.1063/1.2644697

    Article  CAS  Google Scholar 

  43. Teramura K, Hori K, Terao Y, Huang Z, Iguchi S, Wang Z, Asakura H, Hosokawa S, Tanaka T (2017) Which is an intermediate species for photocatalytic conversion of CO2 by H2O as the electron donor: CO2 molecule, carbonic acid, bicarbonate, or carbonate ions? J Phys Chem C 121:8711–8721. https://doi.org/10.1021/acs.jpcc.6b12809

    Article  CAS  Google Scholar 

  44. Templeton DH, Dauben CH (1960) Polarized octahedra in barium tetratitanate. J Chem Phys 32:1515–1518. https://doi.org/10.1063/1.1730951

    Article  CAS  Google Scholar 

  45. Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54. https://doi.org/10.1016/0038-092X(80)90405-3

    Article  CAS  Google Scholar 

  46. Liou YC, Wu CT, Tseng KH, Chung TC (2005) Synthesis of BaTi4O9 ceramics by reaction-sintering process. Mater Res Bull 40:1483–1489. https://doi.org/10.1016/j.materresbull.2005.04.028

    Article  CAS  Google Scholar 

  47. Lowell S, Shields JE (2013) Powder surface area and porosity, 3rd edn. Springer, Berlin

    Google Scholar 

  48. Soltani T, Zhu X, Yamamomo A, Singh SP, Fudo E, Tanaka A, Kominami H, Yoshida H (2021) Effect of transition metal oxide cocatalyst on the photocatalytic activity of Ag loaded CaTiO3 for CO2 reduction with water and water splitting. Appl Catal B 286:119899. https://doi.org/10.1016/j.apcatb.2021.119899

    Article  CAS  Google Scholar 

  49. Cui Y, Sun H, Shen G, Jing P, Pu Y (2020) Effect of dual-cocatalyst surface modification on photodegradation activity, pathway, and mechanisms with highly efficient Ag/BaTiO3/MnOx. Langmuir 36:498–509. https://doi.org/10.1021/acs.langmuir.9b02714

    Article  CAS  PubMed  Google Scholar 

  50. Ishii T, Anzai A, Yamamoto A, Yoshida H (2020) Calcium zirconate photocatalyst and silver cocatalyst for reduction of carbon dioxide with water. Appl Catal B 277:119192. https://doi.org/10.1016/j.apcatb.2020.119192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The XAFS experiment was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2020G667). This work was financially supported by the joint research program of the Artificial Photosynthesis, Osaka City University, ISHIZUE 2020 of Kyoto University Research Development Program, the Masuya Memorial Basic Research Foundation, and the Program for Element Strategy Initiative for Catalysts & Batteries (ESICB, JPMXP0112101003) commissioned by the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Yoshida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzai, A., Yamamoto, A. & Yoshida, H. BaTi4O9 Photocatalysts with Variously Loaded Ag Cocatalyst for Highly Selective Photocatalytic CO2 Reduction with Water. Catal Lett 152, 2498–2506 (2022). https://doi.org/10.1007/s10562-021-03831-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03831-1

Keywords

Navigation