Skip to main content
Log in

Selective Oxidation of Isobutane to Methacrylic Acid by Metal-Substituted Ammonium Salts of Molybdovanadophosphoric Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of ammonium salts of molybdovanadophosphoric acid with different metal substitution and x values (abbreviated as (NH4)1.85Mx, M=Cs, Cu and Fe) were synthesized to catalyze the partial oxidation of isobutane to methacrylic acid. By XRD, TG/DTG, XRF, FT-IR, Raman spectroscopy, H2-TPR, NH3-TPD, it can be found that, compared to the un-doped (NH4)1.85H2.15PMo11VO40 catalyst, the specific surface area, amount of acid sites, and immigrating amount of V atom in Keggin unit into the secondary structure were strongly dependent on the substituted metal ions and their content. The optimum activity was obtained over (NH4)1.85Cs0.5 catalyst, which could provide a larger surface area of 37.72 m2 g−1, a higher amount of acid sites (82.47 μmol g−1), and more VO2+ species and V2O5 clusters from the immigration of V atom in Keggin structure. Furthermore, Cu-substituted catalyst accelerated the catalytic cycle of isobutane oxidation due to the higher electron-delivering efficiency, and the MAA desorption became faster and the catalysts exhibited the excellent selectivity to MAA.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ding XL, Wu XN, Zhao YX, He SG (2012) Acc Chem Res 3:382

    Article  CAS  Google Scholar 

  2. Vedrine JC (2016) J Energy Chem 25:936

    Article  Google Scholar 

  3. Grant JT, Venegas JM, Mcdermott WP, Hermans I (2017) Chem Rev 118:2769

    Article  CAS  Google Scholar 

  4. Pierre CS, Xiu LP, Xin HB (2017) Chem Rev 117:8497

    Article  CAS  Google Scholar 

  5. Grasselli RK (2014) Catal Today 238:10

    Article  CAS  Google Scholar 

  6. Li B, Yan R, Lei W, Diao YY, Li ZX, Zhang SJ (2013) Catal Lett 143:829

    Article  CAS  Google Scholar 

  7. Mahboub MJD, Dubois JL, Cavani F, Rostamizadeh M, Patience GS (2018) Chem Soc Rev 47:7703

    Article  Google Scholar 

  8. Chansai S, Kato Y, Ninomiya W, Hardacre C (2021) Faraday Discuss 229:443

    Article  CAS  Google Scholar 

  9. Rajagopalan P, Kuehnle M, Polyakov M, Muller K, Arlt W, Kruse D, Bruckner A, Bentrup U (2014) Catal Commun 48:19

    Article  CAS  Google Scholar 

  10. Kendel S, Brown T (2011) Catal Lett 142:1767

    Article  CAS  Google Scholar 

  11. Liu SZ, Chen L, Wang GW, Liu JW, Gao YA, Shan HH (2016) J Energy Chem 25:85

    Article  Google Scholar 

  12. Jing FL, Katryniok B, Dumeignil F, Bordes-Richard E, Paul S (2014) Catal Sci Technol 4:2938

    Article  CAS  Google Scholar 

  13. He JF, Liu YC, Chu WL, Yang WS (2018) Appl Catal A Gen 556:104

    Article  CAS  Google Scholar 

  14. Langpape M, Millet JM, Ozkan US, Delichere P (1999) J Catal 182:148

    Article  CAS  Google Scholar 

  15. Min JS, Mizuno N (2001) Catal Today 71:89

    Article  CAS  Google Scholar 

  16. Mizuno N, Tateishi M, Iwamoto M (1994) J Chem Soc Chem Commun 1411

  17. Zheng Y, Zhang H, Wang L, Zhang SJ, Wang SJ (2016) Front Chem Sci Eng 10:139

    Article  CAS  Google Scholar 

  18. Li XK, Zhao J, Ji WJ, Zhang ZB, Chen Y, Au CT, Han S, Hibst H (2006) J Catal 237:58

    Article  CAS  Google Scholar 

  19. Sultan M, Paul S, Fournier M, Vanhove D (2004) Appl Catal A Gen 259:141

    Article  CAS  Google Scholar 

  20. Cai X, Ma Y, Zhou Q, Zhang ZT, Chu WL, Yang WS (2021) React Kinet Mech Catal 133:293

    Article  CAS  Google Scholar 

  21. Zhou LL, Zhang SS, Li ZJ, Scott J, Zhang ZK, Liu RJ, Yun J (2019) RSC Adv 9:34065

    Article  CAS  Google Scholar 

  22. Langpape M, Millet J, Ozkan US, Boudeulle M (1999) J Catal 181:80

    Article  CAS  Google Scholar 

  23. Marosi L, AreáN C (2003) J Catal 213:235

    Article  CAS  Google Scholar 

  24. Ballarini N, Candiracci F, Cavani F, Degrand H, Dubois JL, Lucarelli G, Margotti M, Patinet A, Pigamo A, Trifiro F (2007) Appl Catal A Gen 325:263

    Article  CAS  Google Scholar 

  25. Zhou LL, Lwang L, Zhang SJ, Yan RY, Diao YY (2015) J Catal 329:431

    Article  CAS  Google Scholar 

  26. Brückner A, Scholz G, Heidemann D, Schneider M, Herein D, Bentrup U, Kant M (2007) J Catal 245:369

    Article  CAS  Google Scholar 

  27. Dimitratos N, Védrine J (2003) Appl Catal A Gen 256:251

    Article  CAS  Google Scholar 

  28. Casarini D, Centi G, Jiru P, Lena V, Tvaruzkova Z (1993) J Catal 143:325

    Article  CAS  Google Scholar 

  29. Cao YL, Wang L, Zhou LL, Zhang GJ, Xu BH, Zhang SJ (2017) Ind Eng Chem Res 56:653

    Article  CAS  Google Scholar 

  30. Jing F, Katryniok B, Dumeignil F, Borders-Richard E, Paul S (2014) J Catal 309:121

    Article  CAS  Google Scholar 

  31. Loridant S, Huynh Q, Millet J (2010) Catal Today 155:214

    Article  CAS  Google Scholar 

  32. Hardcastle FD, Wachs IE (1991) J Phys Chem 95:5031

    Article  CAS  Google Scholar 

  33. Pöppl A, Manikandan P, Köhler K, Maas P, Strauch P, Bottcher R, Doldfarb D (2001) J Am Chem Soc 123:4577

    Article  CAS  Google Scholar 

  34. Damyanova S, Cubeiro ML, Fierro JLG (1999) J Mol Catal A Chem 142:85

    Article  CAS  Google Scholar 

  35. Zhang H, Yan RY, Yang L, Diao YY, Wang L, Zhang SJ (2013) Ind Eng Chem Res 52:4484

    Article  CAS  Google Scholar 

  36. Putluru S, Mossin S, Riisager AF, Fehrmann R (2011) Catal Today 176:292

    Article  CAS  Google Scholar 

  37. Liu H, Imoto H, Shido T, Iwasawa Y (2001) J Catal 200:69

    Article  CAS  Google Scholar 

  38. Zhou LL, Wang L, Cao YL, Diao YY, Yan RY, Zhang SJ (2017) Mol Catal 438:47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21673227), Scientific Research Project of Mudanjiang Normal University (No.1352DZ001); Innovation and Entrepreneurship Project of Mudanjiang Normal University (No.201910233025); Science and Technology Innovation Project of Mudanjiang Normal University (No.kjcx2020-024mdjnu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Cai or Wenling Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Ma, Y., Chu, W. et al. Selective Oxidation of Isobutane to Methacrylic Acid by Metal-Substituted Ammonium Salts of Molybdovanadophosphoric Acid. Catal Lett 152, 2412–2420 (2022). https://doi.org/10.1007/s10562-021-03821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03821-3

Keywords

Navigation