Skip to main content

W Modified HY Zeolite as Catalyst for Alkylation of Aromatic

Abstract

HY zeolite is commonly considered to have a suitable pore structure for alkylation of aromatic. However, coke deposition results in catalytic activity falling rapidly because of its strong acidity. Herein, we prepared WO3/HY zeolite catalysts by liquid phase deposition method with phosphotungstic acid as the precursor, and their catalytic activities were evaluated by alkylation of naphthalene and n-tetradecene (C14H28). Characterizations showed that WO3 increased acid density and optimized the distribution of surface acidity and pore structure. The process not only increases the W5+ content which can increase the catalytic activity, but also reduces the reaction temperature to extend the service life. Both advantages of the catalysts achieved 96.12% conversion of naphthalene and 97.46% selectivity of monoalkylnaphthalene.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Horňáček M, Hudec P, Velebná K, Lovás P (2015) Positive effect of secondary structure creation in mordenites on alkylation of benzene with 1-tetradecene. Catal Commun 64:1–5

    Article  Google Scholar 

  2. 2.

    Kocal JA, Vora BV, Imai T (2001) Production of linear alkylbenzenes. Appl Catal A 221:295–301

    CAS  Article  Google Scholar 

  3. 3.

    Huang Z, Zhang J, Li P, Lanjian Xu, Zhang X, Yuan Y, Lei Xu (2017) Catal Sci Technol 7:4700–4709

    CAS  Article  Google Scholar 

  4. 4.

    Aitania A, Wang JB, Wang I et al (2014) Environmental benign catalysis for linear alkylbenzene synthesis: a review. Catal Surv Asia 18:1–12

    Article  Google Scholar 

  5. 5.

    Penteado JCP, Eiseoudoa CLRF (2006) Alquilbenzeno sulfonato linear: uma abordagem ambiental eanalítica. Quím Nova 29(5):1038–1046

    CAS  Article  Google Scholar 

  6. 6.

    Lopes da Costa Nathalia, Guedes Pereira Lincoln, Mendes Resende João Victor, et al. (2021) On activated carbon: a remarkable catalyst for 5-hydroxymethylfurfural production. Mol Catal 500, 111334.

  7. 7.

    Desheng W, Liang Y, Xiaolai W (2012) Research developments of heteropoly-acid catalysts. J Mol Catal 26:366–375

    Google Scholar 

  8. 8.

    Wang JJ, Chuang YY, HSU H Y, et al (2017) Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: a mini review. Catal Today 298:109–116

    CAS  Article  Google Scholar 

  9. 9.

    Li J, Ji W, Liu M, Zhao G, Jia W, Zhu Z (2019) New insight into the alkylation-efficiency of methanol with toluene over ZSM-5: microporous diffusibility significantly affects reacting-pathways. Microporous Mesoporous Mater 282:252–259

    CAS  Article  Google Scholar 

  10. 10.

    Lintao Bu, Nimlos MR, Robichaud DJ, Kim S (2018) Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite. Catal Today 312:73–81

    Article  Google Scholar 

  11. 11.

    Da Z, Han Z, Magnoux P, Guisnet M (2001) Liquid-phase alkylation of toluene with long-chain alkenes over HFAU and HBEA zeolites. Appl Catal A 219:45–52

    CAS  Article  Google Scholar 

  12. 12.

    Mogahid Osman, Sulaiman Al-Khattaf, Urbano Díaz, Cristina Martínez, Avelino Corma (2016) Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolite. Catal Sci Technol (60):3166–3181

  13. 13.

    Yoshihiro S, Ajayan V (2015) Shape-selective catalysis in the alkylation of naphthalene: steric interaction with the nanospace of zeolites. J Nanosci Nanotechnol 15:9369–9381

    Article  Google Scholar 

  14. 14.

    Wen LY (2000) Synthesis of linear alkylbenzene catalysts and catalytic distillation of suspended beds. Beijing: Sinopec Research Institution of Petroleum Processing

  15. 15.

    Han MH, Cui Z, Chen W et al (1999) Synthesis of linear alkylbenzene using TH-06 catalyst II. Regeneration of coked catalyst. Petrochem Technol 28(11):734–737

    CAS  Google Scholar 

  16. 16.

    Alabi WO, Tope BB, Jermy RB, Aitani AM, Hattori H, Al-Khattaf SS (2014) Modification of Cs-X for styrene production by side-chain alkylation of toluene with methanol. Catal Today 226:117–123

    CAS  Article  Google Scholar 

  17. 17.

    Lee H, Lee S, Ryoo R, Choi M (2019) Revisiting side-chain alkylation of toluene to styrene: critical role of microporous structures in catalysts. J Catal 373:25–36

    CAS  Article  Google Scholar 

  18. 18.

    Hoveyda Amir H, Zhugralin Adil R (2007) The remarkable metal-catalysed olefin metathesis reaction. Nature 450(7167):243–251

    CAS  Article  Google Scholar 

  19. 19.

    Usha Nandhini K, Arabindoo B, Palanichamy M, Murugesan V (2004) t -Butylation of phenol over mesoporous aluminophosphate and heteropolyacid supported aluminophosphate molecular sieves. J Mol Catal A Chem 223(1):201–210

    Article  Google Scholar 

  20. 20.

    Li Xiaoyun Lu, Xuebin NS et al (2020) Efficient catalytic production of biomass-derived levulinic acid over in deep eutectic solvent. Ind Crops Prod 145:1–7

    Google Scholar 

  21. 21.

    Talib SH, Xiaohu Yu, Qi Yu et al (2020) Non-noble metal single-atom catalysts with support: a theoretical study of ethylene epoxidation. Sci China Mater 63:1003–1014

    CAS  Article  Google Scholar 

  22. 22.

    Kamble SB, Shinde SH, Chandrashekhar V et al (2015) Highly efficient triphenyl (3-sulfopropyl) phosphonium functionalized on silica as a solid acid catalyst for selective mono-allylation of acetals. Catal Sci Technol 5:4039–4047

    CAS  Article  Google Scholar 

  23. 23.

    Ma T, Ding J, Shao R et al (2017) Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type supported on MCM-41 catalysts. Chem Eng J 316:797–806

    CAS  Article  Google Scholar 

  24. 24.

    Fan Y, Fan L, Zhu L et al (2020) Catalytic conversion of biomass for aromatics over HZSM-5 modified by Dawson-type. Bio Energy Res 13:423–438

    CAS  Google Scholar 

  25. 25.

    Zhang P, Yang B, Ma H, Wu Z (2021) Graphene modified porous organic polymer supported catalyst for alkylation desulfurization. Fuel 293:120438

    CAS  Article  Google Scholar 

  26. 26.

    Li Cheng-Peng Wu, Miao J-M (2012) Exceptional crystallization diversity and solid-state conversions of Cd (II) coordination frameworks with 5-bromonicotinate directed by solvent media. Chemistry (Germany) 18:12437–12445

    CAS  Google Scholar 

  27. 27.

    Winoto HP, Fikri ZA, Ha JM et al (2019) Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone. Appl Catal B Environ 241:588–597

    CAS  Article  Google Scholar 

  28. 28.

    Xiong J, Di J, Xia J, Zhu W, Li H (2018) Surface defect engineering in 2D nanomaterials for photocatalysis. Adv Funct Mater 28:1801983

    Article  Google Scholar 

  29. 29.

    Ning Z, Xiyu Li, Huacheng Ye, Shuangming C et al (2016) Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 138:8928–8935

    Article  Google Scholar 

  30. 30.

    Costa AA, Braga PRS, de Macedo JL et al (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous Mesoporous Mater 147:142–148

    Article  Google Scholar 

  31. 31.

    Klinowski J (1991) Solid-state NMR studies of molecular sieve catalysts. Chem Rev 91:1459–1479

    CAS  Article  Google Scholar 

  32. 32.

    Rafiee E, Khodayari M (2015) Synthesis and characterization of a green composite of H3PW12O40 and starch-coated magnetite nano particles as a magnetically-recoverable nano catalyst in Friedel-Crafts alkylation. J Mol Catal A: Chem 398:336–343

    CAS  Article  Google Scholar 

  33. 33.

    Wei Z, Wang W, Li W et al (2021) Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew Chem Int Ed 60:8236–8242

    CAS  Article  Google Scholar 

  34. 34.

    Nie G, Li G, Liang D, Zhang X (2017) Alkylation of toluene with cyclohexene over: a combined experimental and computational study. J Catal 355:145–155

    CAS  Article  Google Scholar 

  35. 35.

    Fan R, Zhang Y, Zhi H, Chen C, Shi T, Zheng L, Zhang H, Zhu J, Zhao H, Wang G (2021) Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation. Nano Res. https://doi.org/10.1007/s12274-021-3384-1

    Article  Google Scholar 

Download references

Acknowledgements

We are so grateful and want to extend our sincere appreciations for the financial support from National Natural Science Foundation of China (No. 21808054).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naiwang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1995 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuai, L., Wang, M., Meng, X. et al. W Modified HY Zeolite as Catalyst for Alkylation of Aromatic. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03820-4

Download citation

Keywords

  • WO3/HY zeolite
  • Phosphotungstic acid
  • Naphthalene alkylation
  • Coke deactivation