Skip to main content
Log in

Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

β-Ni(OH)2 has been synthesized using Ni3(PO4)2 nanowires as precursors by in-situ electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni3(PO4)2 nanowires were transformed into β-Ni(OH)2 with superlattice structure after activation. It has been found that extremely small size is crucial for the complete conversion of Ni3(PO4)2 and the formation of the superlattice structure. The resulting catalysts by in-situ conversion showed high activity and stability toward oxygen evolution reaction (OER) with an overpotential of 310 mV to reach the current density of 10 mA cm−2 and a long-term stability of 110 h. The large amount of NiOOH in the superlattice structure not only increases the OER activity of β-Ni(OH)2, but also improves the oxidation potential of nickel, thereby decreasing the dissolution. This work proves the feasibility of in-situ electrochemical synthesis for high-performance and stable hydroxide catalysts towards OER.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang G, Liu HJ, Qu JH, Li JH (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energ Environ Sci 9:1190–1209

    Article  CAS  Google Scholar 

  2. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Dong XL, Wang YG, Xia YY (2016) Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 7:11741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yu XX, Yu ZY, Zhang XL, Zheng YR, Duan Y, Gao Q, Wu R, Sun B, Gao MR, Wang GX, Yu SH (2019) “Superaerophobic” Nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J Am Chem Soc 141:7537–7543

    Article  PubMed  CAS  Google Scholar 

  5. Yu J, Pan SC, Zhang YX, Liu QZ, Li B (2019) Facile synthesis of monodispersed α-Ni(OH)2 microspheres assembled by ultrathin nanosheets and its performance for oxygen evolution reduction. Front Mater 6:124

    Article  Google Scholar 

  6. Yan YT, Lin JH, Bao K, Xu TX, Qi JL, Gao J, Zhong ZX, Fei WD, Feng JC (2019) Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. J Colloid Interf Sci 552:332–336

    Article  CAS  Google Scholar 

  7. Wang Q, Zhao HY, Li FM, She WY, Wang XM, Xu L, Jiao H (2019) Mo-doped Ni2P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. J Mater Chem A 7:7636–7643

    Article  CAS  Google Scholar 

  8. Theerthagiri J, Cardoso ESF, Fortunato GV, Casagrande GA, Senthilkumar B, Madhavan J, Maia G (2019) Highly electroactive Ni pyrophosphate/Pt catalyst toward hydrogen evolution reaction. ACS Appl Mater Inter 11:4969–4982

    Article  CAS  Google Scholar 

  9. Li P, Chen R, Tian SH, Xiong Y (2019) Efficient oxygen evolution catalysis triggered by nickel phosphide nanoparticles compositing with reduced graphene oxide with controlled architecture. ACS Sustain Chem Eng 7:9566–9573

    Article  CAS  Google Scholar 

  10. Wang JJ, Yue XY, Yang YY, Sirisomboonchai S, Wang PF, Ma XL, Abudula A, Guan GQ (2020) Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloy Compd 819:153346

    Article  CAS  Google Scholar 

  11. Jayabal S, Saranya G, Wu J, Liu YQ, Geng DS, Meng XB (2017) Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5:24540–24563

    Article  CAS  Google Scholar 

  12. Zhang B, Zheng XL, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han LL, Xu JX, Liu M, Zheng LR, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337

    Article  PubMed  CAS  Google Scholar 

  13. Lee M, Oh HS, Cho MK, Ahn JP, Hwang YJ, Min BK (2018) Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl Catal B-Environ 233:130–135

    Article  CAS  Google Scholar 

  14. Liang X, Shi L, Liu YP, Chen H, Si R, Yan WS, Zhang Q, Li GD, Yang L, Zou XX (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Edit 58:7631–7635

    Article  CAS  Google Scholar 

  15. Gao MR, Sheng WC, Zhuang ZB, Fang QR, Gu S, Jiang J, Yan YS (2014) Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136:7077–7084

    Article  PubMed  CAS  Google Scholar 

  16. Fominykh K, Chernev P, Zaharieva I, Sicklinger J, Stefanic G, Doblinger M, Muller A, Pokharel A, Bocklein S, Scheu C, Bein T, Fattakhova-Rohlfing D (2015) Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9:5180–5188

    Article  PubMed  CAS  Google Scholar 

  17. Stern LA, Feng LG, Song F, Hu XL (2015) Ni2P as a janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energ Environ Sci 8:2347–2351

    Article  CAS  Google Scholar 

  18. Diaz-Morales O, Ferrus-Suspedra D, Koper MTM (2016) The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem Sci 7:2639–2645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhan Y, Lu MH, Yang SL, Liu ZL, Lee JY (2016) The origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by iron substitution. ChemElectroChem 3:615–621

    Article  CAS  Google Scholar 

  20. Cheng XD, Pan ZY, Lei CJ, Jin YJ, Yang B, Li ZJ, Zhang XW, Lei LC, Yuan C, Hou Y (2019) A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J Mater Chem A 7:965–971

    Article  CAS  Google Scholar 

  21. Song F, Bai LC, Moysiadou A, Lee SH, Hu C, Liardet L, Hu XL (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140:7748–7759

    Article  PubMed  CAS  Google Scholar 

  22. Lee JG, Hwang J, Hwang HJ, Jeon OS, Jang J, Kwon O, Lee Y, Han B, Shul YG (2016) A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J Am Chem Soc 138:3541–3547

    Article  PubMed  CAS  Google Scholar 

  23. Fu HQ, Zhang L, Wang CW, Zheng LR, Liu PF, Yang HG (2018) 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation. ACS Energy Lett 3:2021–2029

    Article  CAS  Google Scholar 

  24. Shin HH, Mullins CB, Goodenough JB (2018) Oxygen-electrode catalysis on oxoperovskites at 700 °C versus 20 °C. Chem Mater 30:629–635

    Article  CAS  Google Scholar 

  25. Babar NU, Khan K, Joya KS (2021) Engineered nanoscale single-metal-oxides catalytic thin films for high-performance water oxidation. Energ Technol 9:2000896

    Article  CAS  Google Scholar 

  26. Babar NU, Joya KS (2020) Spray-coated thin-film Ni-oxide nanoflakes as single electrocatalysts for oxygen evolution and hydrogen generation from water splitting. ACS Omega 5:10641–10650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Joya KS, Joya YF, de Groot HJM (2014) Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3-/CO2 system at near- neutral pH. Adv Energy Mater 4:1301929

    Article  CAS  Google Scholar 

  28. Wang L, Wang XP, Xi SB, Du YH, Xue JM (2019) α-Ni(OH)2 originated from electro-oxidation of NiSe2 supported by carbon nanoarray on carbon cloth for efficient water oxidation. Small 15:1902222

  29. Xiao X, Huang DK, Fu YQ, Wen M, Jiang X, Lv XW, L M, Gao L, Liu SS, Wang MK, Zhao C, Shen Y, (2018) Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl Mater Inter 10:4689–4696

    Article  CAS  Google Scholar 

  30. Septiani NLW, Kaneti YV, Fathoni KB, Kani K, Allah AE, Yuliarto B, Nugraha DHK, Alothman ZA, Golberg D, Yamauchi Y (2020) Self-assembly of two-dimensional bimetallic nickel−cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem Mater 32:7005–7018

    Article  CAS  Google Scholar 

  31. Zhao WP, Peng CL, Kuang ZY, Zhang QM, Xue Y, Li ZX, Zhou XX, Chen HR (2020) Na+-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chem Eng J 398:125537

    Article  CAS  Google Scholar 

  32. Li H, Xu SM, Li Y, Yan H, Xu SL (2020) An in situ phosphorization strategy towards doped Co2P scaffolded within echinus-like carbon for overall water splitting. Nanoscale 12:19253–19258

    Article  PubMed  CAS  Google Scholar 

  33. Xie LS, Zhang R, Cui L, Liu DN, Hao S, Ma YJ, Du G, Asiri AM, Sun XP (2017) High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew Chem Int Ed Engl 56:1064–1068

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Zhao C (2016) Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation. Chem Mater 28:5659–5666

    Article  CAS  Google Scholar 

  35. Louie MW, Bell AT (2013) An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 135:12329–12337

    Article  PubMed  CAS  Google Scholar 

  36. Konkena B, Masa J, Botz AJR, Sinev I, Xia W, Kossmann J, Drautz R, Muhler M, Schuhmann W (2017) Metallic NiPS3@NiOOH core-shell heterostructures as highly efficient and stable electrocatalyst for the oxygen evolution reaction. ACS Catal 7:229–237

    Article  CAS  Google Scholar 

  37. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    Article  PubMed  CAS  Google Scholar 

  38. Gao MY, Sun CB, Lei H, Zeng JR, Zhang QB (2018) Zhang Nitrate-induced and in situ electrochemical activation synthesis of oxygen deficiencies-rich nickel/nickel (oxy)hydroxide hybrid films for enhanced electrocatalytic water splitting. Nanoscale 10:17546–17551

    Article  PubMed  CAS  Google Scholar 

  39. Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG (2012) Structure−activity correlations in a nickel−borate oxygen evolution catalyst. J Am Chem Soc 134:6801–6809

    Article  PubMed  CAS  Google Scholar 

  40. Bediako DK, Surendranath Y, Nocera DG (2013) Mechanistic studies of the oxygen evolution reaction mediated by a nickel−borate thin film electrocatalyst. J Am Chem Soc 135:3662–3674

    Article  PubMed  CAS  Google Scholar 

  41. Dotan H, Landman A, Sheehan SW, Malviya KD, Shter GE, Grave DA, Arzi Z, Yehudai N, Halabi M, Gal N, Hadari N, Cohen C, Rothschild A, Grader GS (2019) Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat Energy 4:786–795

    Article  CAS  Google Scholar 

  42. Si HY, Deng QX, Chen LC, Wang L, Liu XY, Wu WS, Zhang YH, Zhou JM, Zhang HL (2019) Hierarchical graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting. J Alloy Compd 794:261–267

    Article  CAS  Google Scholar 

  43. Fan K, Chen H, Ji YF, Huang H, Claesson PM, Daniel Q, Philippe B, Rensmo H, Li FS, Luo Y, Sun LX (2016) Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun 7:11981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sandbeck DJS, Secher NM, Inaba M, Quinson J, Sørensen JE, Kibsgaard J, Zana A, Bizzotto F, Speck FD, Paul MTY, Dworzak A, Dosche C, Oezaslan M, Chorkendorff I, Arenz M, Cherevko S (2020) The dissolution dilemma for low Pt loading polymer electrolyte membrane fuel cell catalysts. J Electrochem Soc 167:164501

    Article  CAS  Google Scholar 

  45. Rao Y, Wang Y, Ning H, Li P, Wu MB (2016) Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. ACS Appl Mater Inter 8:33601–33607

    Article  CAS  Google Scholar 

  46. Wu J, Subramaniam J, Liu YQ, Geng DS, Meng XB (2018) Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction. J Alloy Compd 731:766–773

    Article  CAS  Google Scholar 

  47. Chen Z, Yu AP, Higgins D, Li H, Wang HJ, Chen ZW (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano lett 12:1946–1952

    Article  PubMed  CAS  Google Scholar 

  48. Böhm D, Beetz M, Schuster M, Peters K, Hufnagel AG, Döblinger M, Böller B, Bein T, Fattakhova-Rohlfing D (2019) Efficient OER catalyst with low Ir volume density obtained by homogeneous deposition of iridium oxide nanoparticles on macroporous antimony-doped tin oxide support. Adv Funct Mater 30:1906670

    Article  CAS  Google Scholar 

  49. Chen JY, Wu J, Liu YQ, Hu X, Geng DS (2018) Assemblage of perovskite LaNiO3 connected with in situ grown nitrogen-doped carbon nanotubes as high-performance electrocatalyst for oxygen evolution reaction. Phys Status Solidi A 215:1800380

    Article  CAS  Google Scholar 

  50. Wu J, Liu YQ, Geng DS, Liu H, Meng XB (2018) Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dual purpose electrodes for lithium-ion batteries and oxygen evolution reaction. Int J Energ Res 42:853–862

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Science and Technology Beijing. DG acknowledges financial supports from the Fundamental Research Funds for the Central Universities (no. FRF-MP-20-30), 111 Project (no. B170003), and Foshan Science and Technology Innovation Project (no. 2018IT100363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongsheng Geng or Xun Hu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6598 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Jayabal, S., Geng, D. et al. Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate. Catal Lett 152, 2333–2341 (2022). https://doi.org/10.1007/s10562-021-03816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03816-0

Keywords

Navigation